Volume 81, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Determining malaria vector species and age is crucial to measure malaria risk. Although different in ecology and susceptibility to control, the African malaria vectors and are morphologically similar and can be differentiated only by molecular techniques. Furthermore, few reliable methods exist to estimate the age of these vectors, which is a key predictor of malaria transmission intensity. We evaluated the use of near-infrared spectroscopy (NIRS) to determine vector species and age. This non-destructive technique predicted the species of field-collected mosquitoes with approximately 80% accuracy and predicted the species of laboratory-reared insects with almost 100% accuracy. The relative age of young or old females was predicted with approximately 80% accuracy, and young and old insects were predicted with ≥ 90% accuracy. For applications where rapid assessment of the age structure and species composition of wild vector populations is needed, NIRS offers a valuable alternative to traditional methods.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Alphey L, Beard CB, Billingsley P, Coetzee M, Crisanti A, Curtis C, Eggleston P, Godfray C, Hemingway J, Jacobs-Lorena M, James AA, Kafatos FC, Mukwaya LG, Paton M, Powell JR, Schneider W, Scott TW, Sina B, Sinden R, Sinkins S, Spielman S, Touré Y, Collins FG, 2002. Malaria control with genetically manipulated insect vectors. Science 298: 119–121. [Google Scholar]
  2. Drakeley C, Schellenberg D, Kihonda J, Sousa CA, Arez AP, Lopes D, Lines J, Mshinda H, Lengeler C, Armstrong Schellenberg J, Tanner M, Alonso P, 2003. An estimation of the entomological inoculation rate for Ifakara: a semi-urban area in a region of intense malaria transmission in Tanzania. Trop Med Int Health 8: 767–774. [Google Scholar]
  3. Barat LM, 2006. Four malaria success stories: how malaria burden was successfully reduced in Brazil, Eritrea, India, and Vietnam. Am J Trop Med Hyg 72: 12–16. [Google Scholar]
  4. Coetzee M, 1989. Comparative morphology and multivariate analysis for the discrimination of four members of the Anopheles gambiae group in southern Africa. Mosquito Systematics 21: 100–116. [Google Scholar]
  5. Coluzzi M, 1964. Morphological Divergences in the Anopheles gambiae Giles Complex. Geneva: World Health Organization, WHO/MAL/456.
  6. Collins FH, Finnerty V, Petrarca V, 1988. Ribosomal DNA-probes differentiate five cryptic species in the Anopheles gambiae complex. Parassitologia 30: 231–240. [Google Scholar]
  7. Githeko AK, Adungo NI, Karanja DM, Hawley WA, Vulule JM, Seroney IK, Ofulla AV, Atieli FK, Ondijo SO, Genga IO, Odada PK, Situbi PA, Oloo JA, 1996. Some observations on the biting behavior of Anopheles gambiae s.s., Anopheles arabiensis and Anopheles funestus and implications for malaria control. Exp Parasitol 82: 306–315. [Google Scholar]
  8. Hay SI, Rogers DJ, Toomer JF, Snow RW, 2000. Annual Plasmodium falciparum entomological inoculation rates (EIR) Across Africa: literature survey, internet access and review. Trans R Soc Trop Med Hyg 94: 113–127. [Google Scholar]
  9. White GB, Magayuka SA, Boreham PFL, 1972. Comparative studies on sibling species of the Anopheles gambiae Giles complex (Dipt., Culicidae): bionomics and vectorial activity of species and species B at Segera, Tanzania. Bull Entomol Res 62: 295–317. [Google Scholar]
  10. Githeko AK, Service MW, Mbogo CM, Atieli FK, Juna FO, 1994. Origin of blood meals in indoor and outdoor resting malaria vectors in western Kenya. Acta Trop 58: 307–316. [Google Scholar]
  11. Killeen GF, McKenzie FE, Foy BD, Bogh C, Beier JC, 2001. The availability of potential hosts as a determinant of feeding behaviours and malaria transmission by African mosquito populations. Trans R Soc Trop Med Hyg 95: 469–476. [Google Scholar]
  12. Mnzava AE, Rwegoshora RT, Wilkes TJ, Tanner M, Curtis CF, 1995. Anopheles arabiensis and Anopheles gambiae chromosomal inversion polymorphism, feeding and resting behavior in relation to insecticide house-spraying in Tanzania. Med Vet Entomol 9: 316–324. [Google Scholar]
  13. Mathenge EM, Gimnig JE, Kolczak M, Ombok M, Irungu LW, Hawley WA, 2001. Effect of permethrin-impregnated nets on exiting behavior, blood feeding success, and time of feeding of malaria mosquitoes (Diptera; Culicidae) in western Kenya. J. Med. Ent. 38: 531–536. [Google Scholar]
  14. Lindblade KA, Gimnig JE, Kamau L, Hawley WA, Odhiambo F, Olang G, Ter Kuile FO, Vulule JM, Slutsker L, 2006. Impact of sustained use of insecticide-treated bednets on malaria vector species distribution and culicine mosquitoes. J Med Entomol 43: 428–432. [Google Scholar]
  15. Killeen GF, Smith TA, 2007. Exploring the contributions of bed nets, cattle, insecticides and excitorepellency to malaria control: a deterministic model of mosquito host-seeking behaviour and mortality. Trans R Soc Trop Med Hyg 101: 867–880. [Google Scholar]
  16. Saul A, 2003. Zooprophylaxis or zoopotentiation: the outcome of introducing animals on vector transmission is highly dependent on the mosquito mortality while search. Malar J 2: 32. [Google Scholar]
  17. White GB, 1974. Anopheles gambiae complex and disease transmission in Africa. Trans R Soc Trop Med Hyg 68: 278–301. [Google Scholar]
  18. Lindsay SW, Thomas CJ, 2001. Global warming and risk of vivax malaria in Great Britain. Glob Change Hum Health 2: 80–84. [Google Scholar]
  19. Minakawa N, Seda P, Guiyun Y, 2002. Influence of host and larval habitat distribution on the abundance of African malaria vectors in western Kenya. Am J Trop Med Hyg 67: 32–38. [Google Scholar]
  20. Charlwood JD, Edoh D, 1996. Polymerase chain reaction used to describe larval habitat use by Anopheles gambiae complex (Diptera: Culicidae) in the environs of Ifakara, Tanzania. J Med Entomol 33: 202–204. [Google Scholar]
  21. Gillies MT, 1964. Selection for host preference in Anopheles gambiae. Nature 203: 852–854. [Google Scholar]
  22. Gillies MT, Furlong M, 1964. An investigation into the behaviour of Anopheles parensis Gillies at Malindi on the Kenya coast. Bull Entomol Res 55: 1–16. [Google Scholar]
  23. Beier JC, 1998. Malaria parasite development in mosquitoes. Annu Rev Entomol 43: 519–543. [Google Scholar]
  24. Macdonald G, 1957. The Epidemiology and Control of Malaria. London: Oxford University Press.
  25. Smith DL, McKenzie FE, 2004. Statics and dynamics of malaria infection in Anopheles mosquitoes. Malar J 3: 13. [Google Scholar]
  26. Charlwood JD, 1997. Vectorial capacity, species diversity and population cycles of anopheline mosquitoes (Diptera: Culicidae) from indoor light-trap collections in a house in southeastern Tanzania. African Entomol 5: 93–101. [Google Scholar]
  27. Takken W, Charlwood JD, Billingsley PF, Gort G, 1998. Dispersal and survival of Anopheles funestus and A. gambiae s.l. (Diptera: Culicidae) during the rainy season in southeast Tanzania. Bull Entomol Res 88: 1–6. [Google Scholar]
  28. Lindsay SW, Armstrong Schellenberg JR, Zeiler HA, Daly RJ, Salum FM, Wilkins HA, 1995. Exposure of Gambian children to Anopheles gambiae malaria vectors in an irrigated rice production area. Med Vet Entomol 9: 50–58. [Google Scholar]
  29. Smith T, Charlwood JD, Takken W, Tanner M, Spiegelhalter DJ, 1995. Mapping the densities of malaria vectors within a single village. Acta Trop 59: 1–18. [Google Scholar]
  30. Ribeiro JMC, Seulu F, Abose T, Kidane G, Teklehaimonot A, 1996. Temporal and spatial distribution of anopheline mosquitoes in an Ethiopian village: implications for malaria control strategies. Bull World Health Organ 74: 299–305. [Google Scholar]
  31. Gillies MT, 1958. A modified technique for the age-grading of populations of Anopheles gambiae. Ann Trop Med Parasitol 52: 261–273. [Google Scholar]
  32. Lehane MJ, Mail TS, 1985. Determining the age of adult male and female Glossina morsitans morsitans using a new technique. Ecol Entomol 10: 219–224. [Google Scholar]
  33. Schlein Y, 1979. Age grouping of anopheline malaria vectors (Diptera: Culicidae) by the cuticular growth lines. J Med Entomol 16: 502–506. [Google Scholar]
  34. Caputo B, Dani FR, Horne GL, Petrarca V, Turillazzi S, Coluzzi M, Priestman AA, della Torre A, 2005. Identification and composition of cuticular hydrocarbons of the major Afrotropical malaria vector An. gambiae s.s. (Diptera: Cilicidae): analysis of sexual dimorphism and age-related changes. J Mass Spectrom 40: 1595–1604. [Google Scholar]
  35. Perez-Mendoza J, Throne JE, Dowell FE, Baker JE, 2002. Chronological age-grading of three species of stored-product beetles by using near-infrared spectroscopy. J. Econ. Ent. 97: 1159–1167. [Google Scholar]
  36. Cook PE, Hugo LE, Iturbe-Ormaetxe I, Williams CR, Chenoweth SF, Ritchie SA, Ryan PA, Kay BH, Blows MW, O’Neill SL, 2006. The use of transcriptional profiles to predict adult mosquito age under field conditions. Proc Natl Acad Sci USA 103: 18060–18065. [Google Scholar]
  37. Dowell FE, Throne JE, Wang D, Baker JE, 1999. Identifying stored-grain insects using near-infrared spectroscopy. J Econ Entomol 93: 165–169. [Google Scholar]
  38. Aldrich BT, Maghirang EB, Dowell FE, Kambhampati S, 2007. Identification of termite species of the genus Zootermopsis using near-infrared reflectance spectroscopy. J Insect Sci 7: 18. [Google Scholar]
  39. Dowell FE, Parker AG, Benedict MQ, Robinson AS, Broce AB, Wirtz RA, 2005. Sex separation of tsetse fly pupae using near-infrared spectroscopy. Bull Entomol Res 95: 249–257. [Google Scholar]
  40. Hall MH, Dutro SM, Klowden MJ, 1990. Determination by near-infrared reflectance spectroscopy of mosquito (Diptera: Culicidae) bloodmeal size. J Med Entomol 27: 76–79. [Google Scholar]
  41. Gray EM, Bradley TJ, 2005. Physiology of desiccation resistance in Anopheles gambiae and Anopheles arabiensis. Am J Trop Med Hyg 73: 553–559. [Google Scholar]
  42. Reeves JM, Peiris S, Scholte E, Wirtz RA, Dowell FE, 2009. Age grading Culicoides sonorensis (Diptera: Ceratopogonidae) using near-infrared spectroscopy. Med Vet Entomol 23: (in press). [Google Scholar]
  43. Scott JA, Brogdon WG, Collins FH, 1993. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg 49: 520–529. [Google Scholar]
  44. Williams PC, 2001. Implementation of near-infrared technology. Williams P, Norris K, eds. Near Infrared Technology in the Agricultural and Food Industries. St. Paul, MN: American Association of Cereal Chemists, 145–169.
  45. Martens H, Naes T, 2001. Multivariate calibration by data compression. Williams P, Norris K, eds. Near Infrared Technology in the Agricultural and Food Industries. St. Paul, MN: American Association of Cereal Chemists, 59–100.
  46. Miller CE, 2001. Chemical principles of near-infrared technology. Williams P, Norris K, eds. Near Infrared Technology in the Agricultural and Food Industries. St. Paul, MN: American Association of Cereal Chemists, Inc., 19–37.
  47. Killeen GF, Tami A, Kihonda J, Okumu FO, Kotas ME, Grundmann H, Kasigudi N, Ngonyani H, Mayagaya V, Nathan R, Abdulla S, Charlwood JD, Smith TA, Lengeler C, 2007. Cost-sharing strategies combining targeted public subsidies with private-sector delivery achieve high bednet coverage and reduced malaria transmission in Kilombero Valley, southern Tanzania. BMC Infect Dis 7: 121. [Google Scholar]
  48. Shenk JS, Workman JJ Jr, Westerhaus MO, 2001. Application of NIR spectroscopy to agricultural products. Burns DA, Ciurczak E, eds. Handbook of Near-Infrared Analysis. Second edition New York: Marcel Dekker, 419–474.
  49. Carlson DA, Service MW, 1980. Identification of mosquitoes of Anopheles gambiae species complex A and B by analysis of cuticular components. Science 207: 1089–1091. [Google Scholar]
  50. Milligan PJM, Phillips A, Broomfield G, Molyneux DH, Toure Y, Coluzzi M, 1993. A study of the use of gas chromatography of cuticular hydrocarbons for identifying members of the Anopheles gambiae (Diptera: Culicidae) complex. Bull Entomol Res 83: 613–624. [Google Scholar]
  51. Gillies MT, Wilkes TJ, 1965. A study of age-composition of populations of Anopheles gambiae Giles and a Funestus Giles in North-Eastern Tanzania. Bull Entomol Res 56: 237–262. [Google Scholar]
  52. Charlwood JD, Bryan JH, 1987. A mark-recapture experiment with the filariasis vector Anopheles punctulatus in Papua New Guinea. Ann Trop Med Parasitol 81: 429–436. [Google Scholar]
  53. Detinova TS, 1962. Age-grouping methods in Diptera of medical importance with special reference to some vectors of malaria. Monogr Ser World Health Organ 47: 13–191. [Google Scholar]
  54. Lines JD, Wilkes TJ, Lyimo EO, 1991. Human malaria infectiousness measured by age-specific sporozoite rates in Anopheles gambiae in Tanzania. Parasitol 102: 167–177. [Google Scholar]
  55. Killeen GF, McKenzie FE, Foy BD, Schieffelin C, Billingsley PF, Beier JC, 2000. The potential impacts of integrated malaria transmission control on entomologic inoculation rate in highly endemic areas. Am J Trop Med Hyg 62: 545–551. [Google Scholar]
  56. Killeen GF, McKenzie FE, Foy BD, Schieffelin C, Billingsley PF, Beier JC, 2000. A simplified model for predicting malaria entomologic inoculation rates based on entomologic and parasitologic parameters relevant to control. Am J Trop Med Hyg 62: 535–544. [Google Scholar]
  57. Briet OJ, 2002. A simple method for calculating mosquito mortality rates, correcting for seasonal variations in recruitment. Med Vet Entomol 16: 22–27. [Google Scholar]
  58. Hugo LE, Kay BH, Eaglesham GK, Holling N, Ryan PA, 2006. Investigation of cuticular hydrocarbons for determining the age and survivorship of Australasian mosquitoes. Am J Trop Med Hyg 74: 462–474. [Google Scholar]
  59. Huho BJ, Ng’habi KR, Killeen GF, Nkwengulila G, Knols BGJ, Ferguson HM, 2006. A reliable morphological method to assess the age of male An. gambiae. Malar J 5: 62. [Google Scholar]
  60. Perez-Mendoza J, Dowell FE, Broce AB, Throne JE, Wirtz RA, Xie F, Fabrick JA, Baker JE, 2002. Chronological age-grading of house flies by using near-infrared spectroscopy. J Med Entomol 39: 499–508. [Google Scholar]
  61. Huho BJ, Ng’habi KR, Killeen GF, Nkwengulila G, Knols BGJ, Ferguson HM, 2006. Nature beats nurture: a case study of the physiological fitness of free-living and laboratory-reared male Anopheles gambiae s.l. J Exp Biol 210: 2939–2947. [Google Scholar]
  62. Greenwood BM, Fidock DA, Kyle DE, Kappe SH, Collins FH, Duffy PE, 2008. Malaria: progress, perils, and prospects for eradication. J Clin Invest 118: 1266–1276. [Google Scholar]
  63. Brady J, 1963. Results of age-grouping dissections on 4 species of Anopheles from southern Ghana. Bull World Health Organ 29: 147. [Google Scholar]
  64. Detinova TS, 1968. Age structure of insect populations of medical importance. Annu Rev Entomol 13: 427–450. [Google Scholar]
  65. Snow WF, Wilkes TJ, 1977. Age composition and vertical distribution of mosquito populations in Gambia, West-Africa. J Med Entomol 13: 507–513. [Google Scholar]
  66. Moffett A, Shackelford N, Sarkar S, 2007. Malaria in Africa: vector species’ niche models and relative risk maps. PLoS One 2: e824, doi: 10.1371/journal.pone.0000824.
  67. Lindsay SW, Parson L, Thomas CJ, 1998. Mapping the ranges and relative abundance of the two principal African malaria vectors, Anopheles gambiae sensu stricto and An. arabiensis, using climate data. Proc R Soc Lond B Biol Sci 265: 847–854. [Google Scholar]

Data & Media loading...

  • Received : 14 Apr 2009
  • Accepted : 06 Jul 2009

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error