1921
Volume 81, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Outcrossing potential between parasites is defined by the population-level diversity (PLD) and complexity of infection (COI). There have been few studies of PLD and COI in low transmission regions. Since the 1995–1998 Peruvian Amazon epidemic, there has been sustained transmission with < 0.5 and < 1.6 infections/person/year. Using weekly active case detection, we described PLD by heterozygosity (H) and COI using msp1-B2 and msp3α. Not being homologous genes, we limited comparisons to within species. ( = 293) had low (H = 0.581) and ( = 186) had high (H = 0.845) PLD. A total of 9.5% infections and 26.3% infections had COI > 1. Certain allele types were in more mixed infections than expected by chance. The few appearances of new alleles could be explained by stochastic polymerase chain reaction detection or synchronization/sequestration. The results suggest propagation of mixed infections by multiple inocula, not super-infection, implying decade-long opportunity for outcrossing in these mixed infections.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.2009.09-0132
2009-12-01
2019-05-20
Loading full text...

Full text loading...

/deliver/fulltext/14761645/81/6/0810950.html?itemId=/content/journals/10.4269/ajtmh.2009.09-0132&mimeType=html&fmt=ahah

References

  1. Aramburu GJ, Ramal AC, Witzig R, 1999. Malaria reemergence in the Peruvian Amazon region. Emerg Infect Dis 5: 209–215. [Google Scholar]
  2. Branch OH, Casapia WM, Gamboa DV, Hernandez JN, Alava FF, Roncal N, Alvarez E, Perez EJ, Gotuzzo E, 2005. Clustered local transmission and asymptomatic Plasmodium falciparum and Plasmodium vivax malaria infections in recently emerged, hypoendemic Peruvian Amazon community. Malar J 4: 27. [Google Scholar]
  3. Paul REL, Packer MJ, Walmsley M, Lagog M, Ranford-Cartwright LC, Paru R, Day KP, 1995. Mating patterns in malaria parasite populations of Papua New Guinea. Science 269: 1709–1711. [Google Scholar]
  4. Robert F, Ntoumi F, Angel G, Candito D, Rogier C, Fandeur T, Sarthou JL, Mercereau-Puijalon O, 1996. Extensive genetic diversity of Plasmodium falciparum isolates collected from patients with severe malaria in Dakar, Senegal. Trans R Soc Trop Med Hyg 90: 704–711. [Google Scholar]
  5. Paul RE, Hackford I, Brockman A, Muller-Graf C, Price R, Luxemburger C, White NJ, Nosten F, Day KP, 1998. Transmission intensity and Plasmodium falciparum diversity on the northwestern border of Thailand. Am J Trop Med Hyg 58: 195–203. [Google Scholar]
  6. Ariey F, Chalvet W, Hommel D, Peneau C, Hulin A, Mercereau-Puijalon O, Duchemin JB, Sarthou JL, Reynes JM, Fandeur T, 1999. Plasmodium falciparum parasites in French Guiana: limited genetic diversity and high selfing rate. Am J Trop Med Hyg 61: 978–985. [Google Scholar]
  7. Konate L, Zwetyenga J, Rogier C, Bischoff E, Fontenille D, Tall A, Spiegel A, Trape JF, Mercereau-Puijalon O, 1999. Variation of Plasmodium falciparum msp1 block 2 and msp2 allele prevalence and of infection complexity in two neighbouring Senegalese villages with different transmission conditions. Trans R Soc Trop Med Hyg 93 (Suppl 1): 21–28. [Google Scholar]
  8. Branch OH, Takala S, Kariuki S, Nahlen BL, Kolczak M, Hawley W, Lal AA, 2001. Plasmodium falciparum genotypes, low complexity of infection, and resistance to subsequent malaria in participants in the Asembo Bay Cohort Project. Infect Immun 69: 7783–7792. [Google Scholar]
  9. Da Silveira LA, Dorta ML, Kimura EAS, Katzin AM, Kawamoto F, Tanabe K, Ferreira MU, 1999. Allelic diversity and antibody recognition of Plasmodium falciparum merozoite surface protein 1 during hypoendemic malaria transmission in the Brazilian Amazon Region. Infect Immun 67: 5906–5916. [Google Scholar]
  10. Takala S, Branch O, Escalante AA, Kariuki S, Wootton J, Lal AA, 2002. Evidence for intragenic recombination in Plasmodium falciparum: identification of a novel allele family in Block 2 of merozoite surface protein-1: Asembo Bay Area Cohort Project XIV. Mol Biochem Parasitol 125: 163–171. [Google Scholar]
  11. Tetteh KK, Cavanagh DR, Corran P, Musonda R, McBride JS, Conway DJ, 2005. Extensive antigenic polymorphism within the repeat sequence of the Plasmodium falciparum merozoite surface protein 1 block 2 is incorporated in a minimal polyvalent immunogen. Infect Immun 73: 5928–5935. [Google Scholar]
  12. Chenet SM, Branch OH, Escalante AA, Lucas CM, Bacon DJ, 2008. Genetic diversity of vaccine candidate antigens in Plasmodium falciparum isolates from the Amazon basin of Peru. Malar J 7: 93. [Google Scholar]
  13. Tami A, Grundmann H, Sutherland C, McBride JS, Cavanagh DR, Campos E, Snounou G, Barnabe C, Tibayrenc M, Warhurst DC, 2002. Restricted genetic and antigenic diversity of Plasmodium falciparum under mesoendemic transmission in the Venezuelan Amazon. Parasitology 124: 569–581. [Google Scholar]
  14. Galinski MR, Corredor-Medina C, Povoa M, Crosby J, Ingravallo P, Barnwell JW, 1999. Plasmodium vivax merozoite surface protein-3 contains coiled-coil motifs in an alanine-rich central domain. Mol Biochem Parasitol 101: 131–147. [Google Scholar]
  15. Cohen C, Parray DA, 1994. Alpha-helical coiled coils: more facts and better predictions. Science 263: 488–489. [Google Scholar]
  16. Bruce MC, Galinski MR, Barnwell JW, Snounou G, Day KP, 1999. Polymorphism at the merozoite surface protein-3α locus of Plasmodium vivax: global and local diversity. Am J Trop Med Hyg 61: 518–525. [Google Scholar]
  17. Rayner JC, Corredor V, Feldman D, Ingravallo P, Iderabdullah F, Galinski MR, Barnwell JW, 2002. Extensive polymorphism in the Plasmodium vivax merozoite surface coat protein MSP-3α is limited to specific domains. Parasitology 125: 393–405. [Google Scholar]
  18. Bruce MC, Galinski MR, Barnwell JW, Donnelly CA, Walmsley M, Alpers MP, Walliker D, Day KP, 2000. Genetic diversity and dynamics of Plasmodium falciparum and P. vivax populations in multiply infected children with asymptomatic malaria infections in Papua New Guinea. Parasitology 121: 257–272. [Google Scholar]
  19. Cui L, Mascorro CN, Fan Q, Rzomp KA, Khuntirat B, Zhou G, Chen H, Yan G, Sattabongkot J, 2003. Genetic diversity and multiple infections of Plasmodium vivax malaria in Western Thailand. Am J Trop Med Hyg 68: 613–619. [Google Scholar]
  20. Zakeri S, Barjesteh H, Djadid ND, 2006. Merozoite surface protein-3α is a reliable marker for population genetic analysis of Plasmodium vivax. Malar J 5: 53. [Google Scholar]
  21. Ord R, Olley S, Tami A, Sutherland CJ, 2005. High sequence diversity and evidence of balancing selection in the Pvmsp3alpha gene of Plasmodium vivax in the Venezuelan Amazon. Mol Biochem Parasitol 144: 86–93. [Google Scholar]
  22. Imwong M, Nair S, Pukrittayakamee S, Sudimack D, Williams JT, Mayxay M, Newton PN, Kim JR, Nandy A, Osorio L, Carlton JM, White NJ, Day NP, Anderson TJ, 2007. Contrasting genetic structure in Plasmodium vivax populations from Asia and South America. Int J Parasitol 37: 1013–1022. [Google Scholar]
  23. Polley SD, Tetteh KK, Cavanagh DR, Pearce RJ, Lloyd JM, Bojang KA, Okenu DM, Greenwood BM, McBride JS, Conway DJ, 2003. Repeat sequences in Block 2 of Plasmodium falciparum merozoite surface protein 1 are targets of antibodies associates with protection from malaria. Infect Immun 71: 1833–1842. [Google Scholar]
  24. Cavanagh DR, Dodoo D, Hviid L, Kurtzhals JA, Theander TG, Akanmori BD, Polley S, Conway DJ, Koram K, McBride JS, 2004. Antibodies to the N-terminal block 2 of Plasmodium falciparum merozoite surface protein 1 are associated with protection against clinical malaria. Infect Immun 72: 6492–6502. [Google Scholar]
  25. Mascorro CN, Zhao K, Khuntirat B, Sattabongkot J, Yan G, Escalante AA, Cui L, 2005. Molecular evolution and intragenic recombination of the merozoite surface protein MSP-3alpha from the malaria parasite Plasmodium vivax in Thailand. Parasitology 131: 25–35. [Google Scholar]
  26. Wellems TE, Walliker D, Smith CL, do Rosario VE, Maloy WL, Howard RJ, Carter R, McCutchan TF, 1987. A histidine-rich protein gene marks a linkage group favored strongly in a genetic cross of Plasmodium falciparum. Cell 49: 633–642. [Google Scholar]
  27. Walliker D, Quakyi IA, Wellems TE, McCutchan TF, Szarfman A, London WT, Corcoran LM, Burkot TR, Carter R, 1987. Genetic analysis of the human malaria parasite Plasmodium falciparum. Science 236: 1661–1666. [Google Scholar]
  28. McCutchan TF, de la Cruz VF, Good MF, Wellems TE, 1988. Antigenic diversity in Plasmodium falciparum. Prog Allergy 41: 173–192. [Google Scholar]
  29. Conway DJ, McBride JS, 1991. Population genetics of Plasmodium falciparum within a malaria hyperendemic area. Parasitology 103: 7–16. [Google Scholar]
  30. Conway DJ, Cavanagh DR, Tanabe K, Roper C, Mikes ZS, Sakihama N, Bojang KA, Oduola AM, Kremsner PG, Arnot DE, Greenwood BM, McBride JS, 2000. A principal target of human immunity to malaria identified by molecular population genetic and immunological analyses. Nat Med 6: 689–692. [Google Scholar]
  31. Takala SL, Escalante AA, Branch OH, Kariuki S, Biswas S, Chaiyaroj SC, Lal AA, 2006. Genetic diversity in the Block 2 region of the merozoite surface protein 1 (MSP-1) of Plasmodium falciparum: additional complexity and selection and convergence in fragment size polymorphism. Infect Genet Evol 6: 417–424. [Google Scholar]
  32. Rubio JM, Benito A, Roche J, Berzosa PJ, Garcia ML, Mico M, Edu M, Alvar J, 1999. Semi-nested, multiplex polymerase chain reaction for detection of human malaria parasites and evidence of Plasmodium vivax infection in Equatorial Guinea. Am J Trop Med Hyg 60: 183–187. [Google Scholar]
  33. Ord RL, Tami A, Sutherland CJ, 2008. AMA1 genes of sympatric Plasmodium vivax and P. falciparum from Venezuela differ significantly in genetic diversity and recombination frequency. PLoS One 3: e3366. [Google Scholar]
  34. Creasey A, Fenton B, Walker A, Thaithong S, Oliveira S, Mutambu S, Walliker D, 1990. Genetic diversity of Plasmodium falciparum shows geographical variation. Am J Trop Med Hyg 42: 403–413. [Google Scholar]
  35. Färnert A, Snounou G, Rooth I, Bjorkman A, 1997. Daily dynamics of Plasmodium falciparum subpopulations in asymptomatic children in a holoendemic area. Am J Trop Med Hyg 56: 538–547. [Google Scholar]
  36. Färnert A, 2008. Plasmodium falciparum population dynamics: only snapshots in time? Trends Parasitol 24: 340–344. [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.2009.09-0132
Loading
/content/journals/10.4269/ajtmh.2009.09-0132
Loading

Data & Media loading...

Supplementary Data Figure 1

  • Received : 13 Mar 2009
  • Accepted : 04 Jul 2009

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error