Volume 81, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


To test for the effects of host accessibility on blood-feeding behavior, we assessed degrees of anthropophily of the malaria mosquito at two stages of the behavioral sequence of host foraging, in a rice growing area near Bobo-Dioulasso, Burkina Faso, where humans are not readily accessible because of years of generalized use of (mostly non-impregnated) bed nets. First, patterns of host selection were assessed by the identification of the blood meal origin of indoor-resting samples. Inherent host preferences were then determined by two odor-baited entry traps, set side by side in a choice arrangement, releasing either human or calf odor. The proportion of feeds taken on humans was around 40%, whereas 88% of trapped “chose” the human-baited trap, indicating a zoophilic pattern of host selection despite a stronger trap entry response with human odor. This paradox can be interpreted as the evolution of a plastic strategy of feeding behavior in this field population of because of the greater accessibility of readily available, although less-preferred, hosts.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Dye C, 1992. The analysis of parasite transmission by blood-sucking insect. Annu Rev Entomol 37: 1–19. [Google Scholar]
  2. Lehane M, 2005. The Biology of Bloodsucking in Insects. Second edition. Cambridge: Cambridge University Press.
  3. Charlwood JD, Smith T, Kihonda J, Heiz B, Billingsley PF, Takken W, 1995. Density independent feeding success of malaria vectors (Diptera: Culicidae) in Tanzania. Bull Entomol Res 85: 29–35. [Google Scholar]
  4. Edman JD, Spielman A, 1988. Blood feeding by vectors: physiology, ecology, behavior, and vertebrate defense. Monath T, ed. Epidemiology of Arthropod-Borne Viral Diseases. Volume 1, 153–89.
  5. Lyimo IN, Ferguson HM, 2009. Ecological and evolutionary determinants of host species choice in mosquito vectors. Trends Parasitol 25: 189–196. [Google Scholar]
  6. Killeen GF, McKenzie FE, Foy BD, Bogh C, Beier JC, 2001. The availability of potential hosts as a determinant of feeding behaviours and malaria transmission by African populations. Trans R Soc Trop Med Hyg 95: 469–476. [Google Scholar]
  7. Bøgh C, Pedersen EM, Mukoko DA, Ouma JH, 1998. Permethrin-impregnated bed net effects on resting and feeding behavior of lymphatic filariasis vector mosquitoes in Kenya. Med Vet Entomol 12: 52–59. [Google Scholar]
  8. Mwandawiro C, Boots M, Tuna N, Suwonkerd W, Tsuda Y, Takagi M, 2000. Heterogeneity in the host preference of Japanese encephalitis vectors in Chiang Mai, northern Thailand. Trans R Soc Trop Med Hyg 94: 238–242. [Google Scholar]
  9. Kilpatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak P, 2006. West Nile Virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol 4: e82. [Google Scholar]
  10. Sharp LB, le Sueur LD, 1991. Behavioural variation of Anopheles arabiensis (Diptera: Culicidae) population in Natal, south Africa. Bull Entomol Res 81: 107–110. [Google Scholar]
  11. Besansky N, Hill CA, Costantini C, 2004. No accounting for taste: host preference in malaria vectors. Trends Parasitol 20: 250–251. [Google Scholar]
  12. Coluzzi M, Sabatini A, della Torre A, Di Deco MA, Petrarca V, 2002. A polytene chromosome analysis of the Anopheles gambiae species complex. Science 298: 1415–1418. [Google Scholar]
  13. Day JE, 2005. Host-seeking strategies of mosquito disease vectors. J Am Mosq Control Assoc 21: 17–22. [Google Scholar]
  14. Costantini C, Sagnon N, della Torre A, Diallo M, Brady J, 1998. Odor-mediated host preferences of west African mosquitoes, with particular reference to malaria vectors. Am J Trop Med Hyg 58: 56–63. [Google Scholar]
  15. Wanji S, Tanke T, Atanga SN, Ajonina C, Nicholas T, Fontenille D, 2003. Anopheles species of the mount Cameroon region: biting habits, feeding behaviour and entomological inoculation rates. Trop Med Int Health 8: 643–649. [Google Scholar]
  16. Cohuet A, Simard F, Wondji CS, Antonio-Nkondjio C, Awono-Ambene P, Fontenille D, 2004. High malaria transmission intensity due to Anopheles funestus (Diptera: Culicidae) in a village of Savannah–forest transition area in Cameroon. J Med Entomol 41: 901–905. [Google Scholar]
  17. Mwangangi JM, Mbogo CM, Nzovu JG, Githure JI, Guiyun Y, Beier JC, 2003. Blood-meal analysis for anopheline mosquitoes sampled along the Kenyan coast. J Am Mosq Control Assoc 19: 371–375. [Google Scholar]
  18. Lemasson JJ, Fontenille D, Lochouarn L, Dia I, Simard F, Ba K, Diop A, Diatta M, Molez JF, 1997. Comparison of behaviour and vector efficiency of Anopheles gambiae and An. arabiensis (Diptera: Culicidae) in Barkedji, a sahelian area of Senegal. J Med Entomol 34: 396–403. [Google Scholar]
  19. Diatta M, Spiegel A, Lochouarn L, Fontenille D, 1998. Similar feeding preferences of Anopheles gambiae and Anopheles arabiensis in Senegal. Trans R Soc Trop Med Hyg 92: 270–272. [Google Scholar]
  20. Bøgh C, Clarke SE, Pinder M, Sanyang F, Lindsay SW, 2001. Effect of passive zooprophylaxis on malaria transmission in the Gambia. J Med Entomol 38: 822–828. [Google Scholar]
  21. Sousa CA, Pinto J, Almeida APG, Ferreira C, do Rosário VE, Charlwood JD, 2001. Dogs as a favoured host choice of Anopheles gambiae sensu stricto (Diptera: Culicidae) of São Tomé, west Africa. J Med Entomol 38: 122–125. [Google Scholar]
  22. Duchemin JB, Tsy JM, Rabarison P, Roux J, Coluzzi M, Costantini C, 2001. Zoophily of Anopheles arabiensis and An. Gambiae in Madagascar demonstrated by odour-baited entry traps. Med Vet Entomol 15: 50–57. [Google Scholar]
  23. Caputo B, Nwakanma D, Jawara M, Adiamoh M, Dia I, Konate L, Petrarca V, Conway DJ, della Torre A, 2008. Anopheles gambiae complex along the Gambia river, with particular reference to the molecular forms of An. Gambiae s.s. Malar J 7: 182. [Google Scholar]
  24. Lanzaro GC, Touré YT, Carnahan J, Zheng L, Dolo G, Traoré S, Petrarca V, Vernick KD, Taylor CE, 1998. Complexities in the genetic structure of Anopheles gambiae populations in west Africa as revealed by microsatellite DNA. Proc Natl Acad Sci USA 95: 14260–14265. [Google Scholar]
  25. Lehman T, Licht M, Elissa N, Maega BTA, Chimumbwa JM, Watsenga CS, Wondji CS, Simard F, Hawley WA, 2003. Population structure of Anopheles gambiae in Africa. J Hered 94: 133–147. [Google Scholar]
  26. della Torre A, Tu Z, Petrarca V, 2005. On the distribution and genetic differentiation of Anopheles gambiae s.s.molecular forms. Insect Biochem Mol Biol 35: 755–769. [Google Scholar]
  27. Esnault C, Boulesteix M, Duchemin JB, Koffi AA, Chandre F, Dabiré R, Robert V, Simard F, Tripet F, Donnelly MJ, Fontenille D, Biémont C, 2008. High genetic differentiation between the M and S molecular forms of Anopheles gambiae in Africa. PLoS One 3: 1–7. [Google Scholar]
  28. Robert V, Petrarca V, Coluzzi M, Boudin C, Carnevale P, 1991 Etude des taux de parturité et d’infection du complexe Anopheles gambiae dans la rizière de la vallée du Kou, Burkina Faso. Robert V, Chippaux JF, Diomandé L, eds. Le Paludisme en Afrique de l’Ouest: Études Entomologiques et Épidémiologiques en Zone Rizicole et en Milieu Urbain, 17–35.
  29. Costantini C, Birkett MA, Gibson G, Ziesman J, Sagnon NF, Mohamed HA, Coluzzi M, Pickett JA, 2001. Electroantennogram and behavioural responses of the malaria vector Anopheles gambiae to human-specific sweat components. MedVet Entomol 15: 259–266. [Google Scholar]
  30. Tirados I, Costantini C, Gibson G, Torr S, 2006. Blood-feeding behaviour of the malarial mosquito Anopheles arabiensis: implications for vector control. Med Vet Entomol 20: 425–437. [Google Scholar]
  31. Dabire RK, Diabate A, Baldet T, Pare-Toe L, Guiguemde RT, Oudreaogo JB, Skovmand O, 2006. Personal protection of long lasting insecticide-treated nets in areas of Anopheles gambiae s.s. resistance to pyrethroids. Malar J 5: 12. [Google Scholar]
  32. Baldet T, Diabaté A, Guiguemde TR, 1999. Etude de la transmission du paludisme en 1999 dans la zone rizicole de la vallée du Kou (Bama), Burkina Faso. Cahiers Santé 13: 55–60. [Google Scholar]
  33. Diabaté A, Baldet T, Chandre F, Dabiré KR, Kengne P, Guiguemde TR, Simard F, Guillet P, Hemingway J, Hougard JM, 2003. Kdr mutation, a genetic marker to assess events of introgression between the molecular M and S forms of Anopheles gambiae (Diptera: Culicidae) in the tropical savannah area of west Africa. J Med Entomol 40: 195–198. [Google Scholar]
  34. Service WM, 1993. Mosquito Ecology: Field Sampling Methods. Second edition. London, UK: Elsevier Applied Science Publisher Ltd, 1–954.
  35. Gillies MT, De Meillon B, 1968. Anophelinae of Africa South of the Sahara (Ethiopian Zoogeographical Region). Second edition. Johannesburg: South African Institute for Medical Research. Publication of the South African Institute for Medical Research no. 54.
  36. Costantini C, Gibson G, Brady J, Merzagora L, Coluzzi M, 1993. A new odour-baited trap to collect host-seeking mosquitoes. Parassitologia 35: 5–9. [Google Scholar]
  37. Detinova TS, 1962. Age-grouping methods in Diptera of medical importance importance with special reference to some vectors of malaria. Monogr Ser WHO 47: 13–191. [Google Scholar]
  38. Beier JC, Perkins PV, Wirtz RA, Koros J, Diggs D, Gargan TP, Koech DK, 1988. Bloodmeal identification by direct enzyme-linked immunosorbent assay (ELISA), tested on Anopheles (Diptera: Culicidae) in Kenya. J Med Entomol 25: 9–16. [Google Scholar]
  39. Gouagna LC, Mulder B, Noubissi E, Tchuinkam T, Verhave JP, Boudin C, 1998. The early sporogonic cycle of Plasmodium falciparum in laboratory-infected Anopheles gambiae: an estimation of parasite efficacy. Trop Med Int Health 3: 21–28. [Google Scholar]
  40. Wirtz RA, Zavala F, Charoenvit Y, Campbell GH, Burkot TR, Schneider I, Esser KM, Beaudoin RL, Andre RG, 1987. Comparative testing of monoclonal antibodies against Plasmodium falciparum sporozoites for ELISA development. Bull World Health Organ 65: 39–45. [Google Scholar]
  41. Favia G, Lanfrancott A, Spanos L, Side’n-Kiamos I, Louis C, 2001. Molecular characterization of ribosomal DNA polymorphisms discriminating among chromosomal forms of Anopheles gambiae s.s. Insect Mol Biol 10: 19–23. [Google Scholar]
  42. Gillies MT, 1954. The recognition of age-groups within populations of Anopheles gambiae by the pre-gravid rate and the sporozoite rate. Ann Trop Med Parasitol 48: 58–74. [Google Scholar]
  43. Bruce-Chwatt LJ, Garreett-Jones C, Weitz B, 1966. Ten year study (1955–1964) of host selection by anopheline mosquitoes. Bull World Health Organ 35: 405–439. [Google Scholar]
  44. Robert V, Gazin P, Boudin C, Molez JF, Ouédraogo V, Carnevale P, 1985. La transmission du paludisme en zone de savane arborée et en zone rizicole des environs de Bobo-Dioulasso (Burkina Faso). Ann Soc Belg Med Trop 65: 201–214. [Google Scholar]
  45. Muriu SM, Muturi EJ, Shililu JI, Mbogo CM, Mwanganji JM, Jacob BG, Irungu LW, Mukabana RW, Githure JI, Novak RJ, 2008. Host choice and multiple blood feeding behaviour of malaria vectors and other anophelines in Mwea rice scheme, Kenya. Malar J 7: 43. [Google Scholar]
  46. Costantini C, Sagnon NF, della Torre A, Coluzzi M, 1999. Mosquito behavioral aspects of vector-human interactions in the Anopheles gambiae complex. Parrassitologia 41: 209–217. [Google Scholar]
  47. Lefèvre T, Gouagna LC, Dabiré R, Elguero E, Fontenille D, Costantini C, Thomas F, 2009. Evolutionary lability of odour-mediated host preference by the malaria vector Anopheles gambiae. Trop Med Int Health 14: 1–9. [Google Scholar]
  48. Scott TW, Lorenz LH, Edman JD, 1990. Effects of house sparrow age and arbovirus infection on attraction of mosquitoes. J Med Entomol 27: 856–863. [Google Scholar]
  49. Muirhead-Thomson RC, 1951. The distribution of anopheline mosquito bites among different age groups: a new factor in malaria epidemiology. BMJ 15: 1114–1117. [Google Scholar]
  50. Spencer M, 1967. Anopheline attack on mother child pairs, Fergusson Island. Papua New Guinea Med J 10: 75. [Google Scholar]
  51. Carnevale P, Frezil JL, Bosseno MF, Le Pont F, Lancien J, 1978. The aggressiveness of Anopheles gambiae A in relation to the age and sex of the human subjects. Bull World Health Organ 56: 147–154. [Google Scholar]
  52. Coluzzi M, 1984. Heterogeneities of the malaria vectorial system in tropical Africa and their significance in malaria epidemiology and control. Bull Wld Hlth Org 63: 107–113. [Google Scholar]
  53. White GB, Magayuka SA, Boreham PFL, 1972. Comparative studies on sibling species of the Anopheles gambiae Giles complex (Dipt. Culicidae): bionomics and vectorial activity of species A and species B at Segera, Tanzania. Bull Entomol Res 62: 295–317. [Google Scholar]
  54. Githeko AK, Service MW, Mbogo CM, 1994. Origin of blood meals in indoor and outdoor resting malaria vectors in western Kenya. Acta Trop 58: 307–316. [Google Scholar]
  55. Konate L, Faye O, Gaye O, Sy N, Diop A, Diouf M, Trape JF, Molez JF, 1999. Zoophagie et hôtes alternatifs des vecteurs du paludisme au Sénégal. Parasite 6: 259–267. [Google Scholar]
  56. Edman JD, 1989. Are mosquitoes gourmet or gourmand? J Am Mosq Control Assoc 4: 487–497. [Google Scholar]
  57. Beier J, Odago WO, Onyango FK, Asiago CM, Koech DK, Roberts CR, 1990. Relative abundance and blood feeding behavior of nocturnally active culicine mosquitoes in western Kenya. J Am Mosq Control Assoc 6: 207–212. [Google Scholar]
  58. Muturi EJ, Muriu S, Shililu J, Mwangangi JM, Jacob BG, Mbogo C, Githure J, Novak RJ, 2008. Blood-feeding patterns of Culex quinquefasciatus and other culicines and implications for disease transmission in Mwea rice scheme, Kenya. Parasitol Res 102: 1329–1335. [Google Scholar]
  59. Mboera LEG, Takken W, 1999. Odour mediated host preference of Culex quinquefasciatus in Tanzania. Entomol Exp Appl 92: 83–88. [Google Scholar]
  60. Edman JD, Taylor DJ, 1968. Culex nigripalpus: seasonal shift in the bird-mammal feeding ratio in a mosquito vector of human encephalitis. Science 161: 67–68. [Google Scholar]

Data & Media loading...

  • Received : 11 Mar 2009
  • Accepted : 18 Jul 2009

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error