Volume 81, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


The sylvatic transmission cycle of Chagas disease in Chile is composed of wild mammals and insects of the genus . We determined infection rates and genotypes in . We collected 227 insects from two ecologically contrasting areas to assess infection. Polymerase chain reaction (PCR)-amplified minicircle DNAs were characterized by Southern blot and hybridization tests with genotype-specific probes. Infection in insects from the more fertile area was almost 2-fold higher than in the poorer area. The genotype TCI was the most prevalent and other genotypes such as TCIIb, TCIId, and TCIIe were found at lower rates. The areas differed in their genotype distribution but not in their genotype diversity. We suggest that the difference in abundance and richness of mammals between the areas may be producing the detected infection levels in vectors. Our results are compared with those reported for mammals from the same area.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Schofield C, 1994. Tritominae-Biology and Control. West Sussex, UK: Eurocommunica Publications, 1–80.
  2. Barreto MP, Ribeiro RD, Filho FF, 1974. Wild reservoirs and vectors of Trypanosoma cruzi. LVII = natural infection of Phyllostomus hastatus hastatus (Tallas, 1767) by T. cruzi. Rev Bras Biol 4: 615–622. [Google Scholar]
  3. Bargues MD, Klisiowicz DR, Gonzalez-Candelas F, Ramsey JM, Monroy C, Ponce C, Salazar-Schettino PM, Panzera F, Abad-Franch F, Sousa OE, Schofield CJ, Dujardin JP, Guhl F, Mas-Coma S, 2008. Phylogeography and genetic variation of Triatoma dimidiata, the main Chagas disease vector in Central America, and its position within the genus Triatoma. PLoS Negl Trop Dis 2: e 233. [Google Scholar]
  4. Bacigalupo A, Segura JA, García A, Hidalgo J, Galuppo S, Cattan PE, 2006. First finding of Chagas disease vectors associated with wild bushes in the metropolitan region of Chile. Rev Med Chil 134: 1230–1236. [Google Scholar]
  5. Dias J, Schofield C, 1999. The evolution of Chagas disease (American trypanosomiasis) control after 90 years since Carlos Chagas discovery. Mem Inst Oswaldo Cruz 94: 103–121. [Google Scholar]
  6. Schofield CJ, Apt W, Sagua H, Panzera F, Dujardin JP, 1998. Alary polymorphism in Triatoma spinolai and its possible relationship with demographic strategy. Med Vet Entomol 12: 30–38. [Google Scholar]
  7. Canals M, Solís R, Tapia C, Ehrenfeld M, Cattan P, 1999. Comparison of some behavioral and physiological feeding parameters of Triatoma infestans Klug, 1834 and Mepraia spinolai Porter, 1934, vectors of Chagas disease in Chile. Mem Inst Oswaldo Cruz 94: 687–692. [Google Scholar]
  8. Ehrenfeld MJ, Canals M, Cattan PE, 1998. Population parameters of Triatoma spinolai (Heteroptera: Reduviidae) under different environmental conditions and densities. J Med Entomol 35: 740–744. [Google Scholar]
  9. Botto-Mahan C, Cattan PE, Medel R, 2006. Chagas disease parasite induces behavioural changes in the kissing bug Mepraia spinolai. Acta Trop 98: 219–223. [Google Scholar]
  10. Rodríguez CS, Carrizo SA, Crocco LB, 2008. Comparison of feeding and defecation patterns between fifth-instar nymphs of Triatoma patagonica (Del Ponte, 1929) and Triatoma infestans (Klug, 1934) under laboratory conditions. Rev Soc Bras Med Trop 41: 330–333. [Google Scholar]
  11. Botto-Mahan C, 2009. Trypanosoma cruzi induces life-history trait changes in the wild kissing bug Mepraia spinolai: implications for parasite transmission. Vector Borne and Zoonotic Dis 9: (in press). doi:10.1089/vbz.2008.0003.
  12. Campos R, Botto-Mahan C, Ortiz S, Acuña-Retamar M, Cattan PE, Solari A, 2007. Trypanosoma cruzi detection in blood by xenodiagnosis and polymerase chain reaction in the wild rodent Octodon degus. Am J Trop Med Hyg 76: 324–326. [Google Scholar]
  13. Schenone H, Villarroel F, Rojas A, Alfaro E, 1980. Factores biológicos de Chagas en Chile. Bol Chil Parasitol 40: 42–54. [Google Scholar]
  14. Canals M, Cruzat L, Molina MC, Ferreira A, Cattan PE, 2001. Blood host sources of Mepraia spinolai (Heteroptera: Reduvidae), wild vector of Chagas disease in Chile. J Med Entomol 38: 303–307. [Google Scholar]
  15. Cattan PE, Pinochet A, Botto-Mahan C, Acuna MI, Canals M, 2002. Abundance of Mepraia spinolai in a Periurban zone of Chile. Mem Inst Oswaldo Cruz 97: 285–287. [Google Scholar]
  16. Botto-Mahan C, Ortiz S, Rozas M, Cattan PE, Solari A, 2005. DNA evidence of Trypanosoma cruzi in the Chilean wild vector Mepraia spinolai (Hemiptera: Reduviidae). Mem Inst Oswaldo Cruz 100: 237–239. [Google Scholar]
  17. Santos-Mallet JR, Silva CS, Gomes SA, Oliveira DL, Santos CL, Sousa DM, Pinheiro NL, Junqueira AC, Gonçalves TC, 2008. Molecular characterization of Trypanosoma cruzi sylvatic isolates from Rio de Janeiro, Brazil. Parasitol Res 103: 1041–1045. [Google Scholar]
  18. Sánchez-Guillén Mdel C, Bernabé C, Tibayrenc M, Zavala-Castro J, Totolhua JL, Méndez-López J, González-Mejía ME, Torres-Rasgado E, López-Colombo A, Pérez-Fuentes R, 2006. Trypanosoma cruzi strains isolated from human, vector, and animal reservoir in the same endemic region in Mexico and typed as T. cruzi I, discrete typing unit 1 exhibit considerable biological diversity. Mem Inst Oswaldo Cruz 101: 585–590. [Google Scholar]
  19. Triana O, Ortiz S, Dujardin JC, Solari A, 2006. Trypanosoma cruzi: variability of stocks from Colombia determined by molecular karyotype and minicircle Southern blot analysis. Exp Parasitol 113: 62–66. [Google Scholar]
  20. Daszak P, Cunningham AA, Hyatt AD, 2001. Anthropogenic environmental change and the emergence of infectious diseases in wild life. Acta Trop 78: 103–116. [Google Scholar]
  21. Ferre EM, Bronsvoort BM, Hamilton KA, Cleaveland S, 2006. Animal movements and the spread of infectious diseases. Trends Microbiol 14: 125–131. [Google Scholar]
  22. Diamond J, 2002. Evolution, consequences, and future of plant and animal domestication. Nature 418: 34–41. [Google Scholar]
  23. Rozas M, Botto-Mahan C, Coronado X, Ortiz S, Cattan PE, Solari A, 2007. Coexistence of Trypanosoma cruzi genotypes in wild and periodomestic mammals in Chile. Am J Trop Med Hyg 77: 647–653. [Google Scholar]
  24. Veas F, Breniere SF, Cuny G, Brengues C, Solari A, Tibayrenc M, 1991. General procedure to construct highly specific kDNA probes for clones of Trypanosoma cruzi for sensitive detection by polymerase chain reaction. Cell Mol Biol 37: 73–84. [Google Scholar]
  25. Sokal R, Rohlf FJ, 1995. Biometry: The Principles and Practice of Statistics in Biological Research. New York: WH Freeman and Company.
  26. Southwood TRE, 1978. Ecological Methods with Particular Reference to the Study of Insect Populations. London, UK: Chapman & Hall.
  27. Ordenes H, Ehrenfeld M, Cattan PE, Canals M, 1996. Tripano-triatomine infection of Triatoma spinolai in a zone with epidemiological risk. Rev Med Chil 124: 1053–1057. [Google Scholar]
  28. Bosseno MF, Espinoza B, Sanchez B, Breniere SF, 2000. Mexican Trypanosoma cruzi stocks: analysis of minicircles kDNA homologies by cross-hybridization. Mem Inst Oswaldo Cruz 95: 473–476. [Google Scholar]
  29. Westenberger SJ, Barnabé C, Campbell DA, Sturn N, 2005. Two hybridization events define the population structure of Trypanosoma cruzi. Genetics 171: 527–543. [Google Scholar]
  30. Botto-Mahan C, Campos R, Acuña-Retamar M, Coronado X, Cattan PE, Solari A, 2009. Temporal variation of Trypanosoma cruzi infection in Native Mammals in Chile. Vector Borne and Zoonotic Dis 9: 00–00 (in press). doi:10.1089/vbz.2009.0006. [Google Scholar]
  31. Botto-Mahan C, Acuña-Retamar M, Campos R, Cattan PE, Solari A, 2009. European rabbits (Oryctolagus cuniculus) are naturally infected with different Trypanosoma cruzi genotypes. Am J Trop Med Hyg 80: 944–946. [Google Scholar]
  32. Yeo M, Acosta N, Llewellyn M, Sánchez H, Adamson S, Miles GA, Miles GA, López E, González N, Patterson JS, Gaunt MW, de Arias AR, Miles MA, 2005. Origins of Chagas disease: Didelphis species are natural hosts of Trypanosoma cruzi I and armadillos hosts of Trypanosoma cruzi II, including hybrids. Int J Parasitol 35: 225–233. [Google Scholar]
  33. Tibayrenc M, 1999. Toward an integrated genetic epidemiology of parasitic protozoa and other pathogens. Annu Rev Genet 33: 449–477. [Google Scholar]
  34. Gower M, Webster JP, 2005. Intraspecific competition and the evolution of virulence in a parasitic trematode. Evolution Int J Org Evolution 59: 544–553. [Google Scholar]

Data & Media loading...

  • Received : 28 Jan 2009
  • Accepted : 25 Jun 2009

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error