Volume 81, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


To identify the hosts of mosquitoes collected from urban and peri-urban habitats in eastern Australia, 1,180 blood fed mosquitoes representing 15 species were analyzed by enzyme-linked immunosorbent assay and molecular techniques. Four common and epidemiologically important species could be classified according to their host-feeding patterns: was anthropophilic, was mammalophilic, was ornithophilic, and was opportunistic, readily feeding on birds and mammals. Mitochondrial cytochrome b DNA sequence data showed that more than 75% of avian blood meals identified from collected from Brisbane, Newcastle, and Sydney originated from ducks (Order Anseriformes, Family Anatidae). More than 75% of avian blood meals from from Cairns belonged to one of three Passerine species, namely (figbird), (common myna), and (helmeted friarbird). This study demonstrates associations between vectors in Australia and vertebrate hosts of endemic and exotic arboviruses.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Mackenzie JS, Lindsay MD, Coelen RJ, Broom AK, Hall RA, Smith DW, 1994. Arboviruses causing human disease in the Australasian zoogeographic region. Arch Virol 136: 447–467. [Google Scholar]
  2. Russell RC, 2002. Ross River virus: ecology and distribution. Annu Rev Entomol 47: 1–31. [Google Scholar]
  3. Hanna JN, Ritchie SA, Phillips DA, Serafin IL, Hills SL, van den Hurk AF, Pyke AT, McBride WJ, Amadio MG, Spark RL, 2001. An epidemic of dengue 3 in far north Queensland, 1997–1999. Med J Aust 174: 178–182. [Google Scholar]
  4. Ritchie SA, Long S, Smith G, Pyke A, Knox TB, 2004. Entomological investigations in a focus of dengue transmission in Cairns, Queensland, Australia, by using the sticky ovitraps. J Med Entomol 41: 1–4. [Google Scholar]
  5. Mackenzie JS, Johansen CA, Ritchie SA, van den Hurk AF, Hall RA, 2002. Japanese encephalitis as an emerging virus: the emergence and spread of Japanese encephalitis virus in Australasia. Curr Top Microbiol Immunol 267: 49–73. [Google Scholar]
  6. Jansen CC, Webb CE, Northill JA, Ritchie SA, Russell RC, van den Hurk AF, 2008. Vector competence of Australian mosquito species for a North American strain of West Nile virus. Vector Borne Zoonotic Dis 8: 805–811. [Google Scholar]
  7. Kay BH, Boreham PFL, Williams GM, 1979. Host preferences and feeding patterns of mosquitoes at Kowanyama, Cape York Peninsula, northern Queensland. Bull Entomol Res 69: 441–457. [Google Scholar]
  8. Kay BH, Boyd AM, Ryan PA, Hall RA, 2007. Mosquito feeding patterns and natural infection of vertebrates with Ross River and Barmah Forest viruses in Brisbane, Australia. Am J Trop Med Hyg 76: 417–423. [Google Scholar]
  9. Muller MJ, Murray MD, Edwards JA, 1981. Blood-sucking midges and mosquitoes feeding on mammals at Beatrice Hill, N.T. Aust J Zool 29: 573–588. [Google Scholar]
  10. van den Hurk AF, Johansen CA, Zborowski P, Paru R, Foley PN, Beebe NW, Mackenzie JS, Ritchie SA, 2003. Mosquito host-feeding patterns and implications for Japanese encephalitis virus transmission in northern Australia and Papua New Guinea. Med Vet Entomol 17: 403–411. [Google Scholar]
  11. Australian Bureau of Statisitics, 2008. Regional Population Growth, Australia 2006–07, Catalog No. 3218.0 and National Regional Profile: Australia. Available at: www.abs.gov.au. Accessed November 12, 2008.
  12. Ritchie SA, Fanning ID, Phillips DA, Standfast HA, McGinn D, Kay BH, 1997. Ross River virus in mosquitoes (Diptera: Culicidae) during the 1994 epidemic around Brisbane, Australia. J Med Entomol 34: 156–159. [Google Scholar]
  13. Harley D, Ritchie S, Phillips D, van den Hurk A, 2000. Mosquito isolates of Ross River virus from Cairns, Queensland, Australia. Am J Trop Med Hyg 62: 561–565. [Google Scholar]
  14. Lee DJ, Clinton KJ, O’Gower AK, 1954. The blood sources of some Australian mosquitoes. Aust J Biol Sci 7: 282–301. [Google Scholar]
  15. Kay BH, Boreham PF, Fanning ID, 1985. Host-feeding patterns of Culex annulirostris and other mosquitoes (Diptera: Culicidae) at Charleville, southwestern Queensland, Australia. J Med Entomol 22: 529–535. [Google Scholar]
  16. Boyle DB, Dickerman RW, Marshall ID, 1983. Primary viraemia responses of herons to experimental infection with Murray Valley encephalitis, Kunjin and Japanese encephalitis viruses. Aust J Exp Biol Med Sci 61: 655–664. [Google Scholar]
  17. Komar N, Langevin S, Hinten S, Nemeth N, Edwards E, Hettler D, Davis B, Bowen R, Bunning M, 2003. Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg Infect Dis 9: 311–322. [Google Scholar]
  18. Boakye DA, Tang J, Truc P, Merriweather A, Unnasch TR, 1999. Identification of bloodmeals in haematophagous diptera by cytochrome B heteroduplex analysis. Med Vet Entomol 13: 282–287. [Google Scholar]
  19. Apperson CS, Harrison BA, Unnasch TR, Hassan HK, Irby WS, Savage HM, Aspen SE, Watson DW, Rueda LM, Engber BR, Nasci RS, 2002. Host-feeding habits of Culex and other mosquitoes (Diptera: Culicidae) in the Borough of Queens in New York City, with characters and techniques for identification of Culex mosquitoes. J Med Entomol 39: 777–785. [Google Scholar]
  20. van den Hurk AF, Smith IL, Smith GA, 2007. Development and evaluation of real-time polymerase chain reaction assays to identify mosquito (Diptera: Culicidae) bloodmeals originating from native Australian mammals. J Med Entomol 44: 85–92. [Google Scholar]
  21. Ngo KA, Kramer LD, 2003. Identification of mosquito bloodmeals using polymerase chain reaction (PCR) with order-specific primers. J Med Entomol 40: 215–222. [Google Scholar]
  22. Molaei G, Andreadis TG, Armstrong PM, Anderson JF, Vossbrinck CR, 2006. Host feeding patterns of Culex mosquitoes and West Nile virus transmission, northeastern United States. Emerg Infect Dis 12: 468–474. [Google Scholar]
  23. Williams CR, Long SA, Russell RC, Ritchie SA, 2006. Field efficacy of the BG-Sentinel compared with CDC Backpack Aspirators and CO2-baited EVS traps for collection of adult Aedes aegypti in Cairns, Queensland, Australia. J Am Mosq Control Assoc 22: 296–300. [Google Scholar]
  24. Blackwell A, Mordue AJ, Mordue W, 1994. Identification of blood-meals of the Scottish biting midge, Culicoides impunctatus, by indirect enzyme-linked immunosorbent assay (ELISA). Med Vet Entomol 8: 20–24. [Google Scholar]
  25. van den Hurk AF, Nisbet DJ, Johansen CA, Foley PN, Ritchie SA, Mackenzie JS, 2001. Japanese encephalitis on Badu Island, Australia: the first isolation of Japanese encephalitis virus from Culex gelidus in the Australasian region and the role of mosquito host-feeding patterns in virus transmission cycles. Trans R Soc Trop Med Hyg 95: 595–600. [Google Scholar]
  26. Cicero C, Johnson NK, 2001. Higher-level phylogeny of new world vireos (aves: vireonidae) based on sequences of multiple mitochondrial DNA genes. Mol Phylogenet Evol 20: 27–40. [Google Scholar]
  27. Tamura K, Dudley J, Nei M, Kumar S, 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596–1599. [Google Scholar]
  28. Simpson D, Day N, 2004. Field Guide to the Birds of Australia. London: Christopher Helm.
  29. Johnson KP, Sorenson MD, 1999. Phylogeny and biogeography of dabbling ducks (Genus: Anas): a comparison of molecular and morphological evidence. Auk 116: 792–805. [Google Scholar]
  30. Joseph L, Wilke T, Ten Have J, Terry Chesser R, 2006. Implications of mitochondrial DNA polyphyly in two ecologically undifferentiated but morphologically distinct migratory birds, the masked and white-browed woodswallows Artamus spp. of inland Australia. J Avian Biol 37: 625–636. [Google Scholar]
  31. Driskell AC, Christidis L, 2004. Phylogeny and evolution of the Australo-Papuan honeyeaters (Passeriformes, Meliphagidae). Mol Phylogenet Evol 31: 943–960. [Google Scholar]
  32. Cupp EW, Zhang D, Yue X, Cupp MS, Guyer C, Sprenger TR, Unnasch TR, 2004. Identification of reptilian and amphibian blood meals from mosquitoes in an eastern equine encephalomyelitis virus focus in central Alabama. Am J Trop Med Hyg 71: 272–276. [Google Scholar]
  33. Kerr KC, Stoeckle MY, Dove CJ, Weigt LA, Francis CM, Hebert PD, 2007. Comprehensive DNA barcode coverage of North American birds. Mol Ecol Notes 7: 535–543. [Google Scholar]
  34. Edman JD, Kale HW, 1971. Host behavior: its influence on the feeding success of mosquitoes. Ann Entomol Soc Am 64: 513–516. [Google Scholar]
  35. Edman JD, Webber LA, Schmid AA, 1974. Effect of host defenses on the feeding pattern of Culex nigripalpus when offered a choice of blood sources. J Parasitol 60: 874–883. [Google Scholar]
  36. Webber LA, Edman JD, 1972. Anti-mosquito behaviour of ciconiiform birds. Anim Behav 20: 228–232. [Google Scholar]
  37. Darbro JM, Harrington LC, 2007. Avian defensive behaviour and blood-feeding success of the West Nile vector mosqutio, Culex pipiens. Behav Ecol 18: 750–757. [Google Scholar]
  38. Scott TW, Chow E, Strickman D, Kittayapong P, Wirtz RA, Lorenz LH, Edman JD, 1993. Blood-feeding patterns of Aedes aegypti (Diptera: Culicidae) collected in a rural Thai village. J Med Entomol 30: 922–927. [Google Scholar]
  39. Scott TW, Morrison AC, Lorenz LH, Clark GG, Strickman D, Kittayapong P, Zhou H, Edman JD, 2000. Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: population dynamics. J Med Entomol 37: 77–88. [Google Scholar]
  40. Ponlawat A, Harrington LC, 2005. Blood feeding patterns of Aedes aegypti and Aedes albopictus in Thailand. J Med Entomol 42: 844–849. [Google Scholar]
  41. Marshall ID, 1988. Murray Valley and Kunjin encephalitis. Monath TP, ed. The Arboviruses: Epidemiology and Ecology. Boca Raton, FL: CRC Press, 151–189.
  42. Boyle DB, Marshall ID, Dickerman RW, 1983. Primary antibody responses of herons to experimental infection with Murray Valley encephalitis, Kunjin and Japanese encephalitis viruses. Aust J Exp Biol Med Sci 61: 665–674. [Google Scholar]
  43. Russell RC, 1995. Arboviruses and their vectors in Australia: an update on the ecology and epidemiology of some mosquito-borne arboviruses. Rev Med Vet Entomol 83: 141–158. [Google Scholar]
  44. Ritchie SA, Phillips D, Broom A, Mackenzie J, Poidinger M, van den Hurk A, 1997. Isolation of Japanese encephalitis virus from Culex annulirostris in Australia. Am J Trop Med Hyg 56: 80–84. [Google Scholar]
  45. Johansen CA, van den Hurk AF, Pyke AT, Zborowski P, Phillips DA, Mackenzie JS, Ritchie SA, 2001. Entomological investigations of an outbreak of Japanese encephalitis virus in the Torres Strait, Australia, in 1998. J Med Entomol 38: 581–588. [Google Scholar]
  46. van den Hurk AF, Nisbet DJ, Hall RA, Kay BH, MacKenzie JS, Ritchie SA, 2003. Vector competence of Australian mosquitoes (Diptera: Culicidae) for Japanese encephalitis virus. J Med Entomol 40: 82–90. [Google Scholar]
  47. Doherty RL, Carley JG, Kay BH, Filippich C, Marks EN, Frazier CL, 1979. Isolation of virus strains from mosquitoes collected in Queensland, 1972–1976. Aust J Exp Biol Med Sci 57: 509–520. [Google Scholar]
  48. Liehne PF, Anderson S, Stanley NF, Liehne CG, Wright AE, Chan KH, Leivers S, Britten DK, Hamilton NP, 1981. Isolation of Murray Valley encephalitis virus and other arboviruses in the Ord River Valley 1972–1976. Aust J Exp Biol Med Sci 59: 347–356. [Google Scholar]
  49. van den Hurk AF, Johansen CA, Zborowski P, Phillips DA, Pyke AT, Mackenzie JS, Ritchie SA, 2001. Flaviviruses isolated from mosquitoes collected during the first recorded outbreak of Japanese encephalitis virus on Cape York Peninsula, Australia. Am J Trop Med Hyg 64: 125–130. [Google Scholar]
  50. Lee DJ, Hicks MM, Debenham ML, Griffiths M, Russell RC, Bryan JH, Russell RC, Marks EN, 1989. The Culicidae of the Australasian Region. Entomology Monograph No. 2. Canberra: Australian Government Publishing Service Press.
  51. Russell RC, Kay BH, 2004. Medical entomology: changes in the spectrum of mosquito-borne disease in Australia and other vector threats and risks, 1972–2004. Aust J Entomol 43: 271–282. [Google Scholar]
  52. Russell RC, 1987. The mosquito fauna of Conjola state forest on the South coast of New South Wales. Part 2. Female feeding behaviour and flight activity. Gen Appl Entomol 19: 17–24. [Google Scholar]
  53. Kilpatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak P, 2006. West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol 4: 606–610. [Google Scholar]
  54. Edman JD, Taylor DJ, 1968. Culex nigripalpus: seasonal shift in the bird-mammal feeding ratio in a mosquito vector of human encephalitis. Science 161: 67–68. [Google Scholar]
  55. Christidis L, Boles WE, 2008. Systematics and Taxonomy of Australian Birds. Collingwood, Australia: Commonwealth Scientific and Industrial Research Organisation Publishing.
  56. Groth JG, 1998. Molecular phylogenetics of finches and sparrows: consequences of character state removal in cytochrome b sequences. Mol Phylogenet Evol 10: 377–390. [Google Scholar]
  57. Kennedy M, Gray RD, Spencer HG, 2000. The phylogenetic relationships of the shags and cormorants: can sequence data resolve a disagreement between behavior and morphology? Mol Phylogenet Evol 17: 345–359. [Google Scholar]

Data & Media loading...

  • Received : 08 Jan 2009
  • Accepted : 28 Jul 2009

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error