Volume 81, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


We assessed the structure and latitudinal selection that might result in sensitivities to critical day-lengths that trigger diapause between populations distributed along North-South and East-West axes in eastern North America. Strong population structure between and existed. Among , a 100-km increase in the latitudinal change resulted in an increased square root of by 0.002. A 100-km increase in the longitudinal change caused an increased square root of by 0.035. A lack of latitudinal influence on the structure between populations suggests a uniform signal using the 12 microsatellite markers, which might increase the risk of West Nile virus (WNV) transmission toward northern areas because of longer breeding season, extend host-seeking period, and larger population size. Northern may have undergone additional generations before diapause is triggered, magnifying population size when WNV amplification is peaking.


Article metrics loading...

Loading full text...

Full text loading...



  1. Barr AR, 1957. The distribution of Culex p. pipiens and C. p. quinquefasciatus in North America. Am J Trop Med Hyg 6: 153–165.
  2. Mattingly PF, Rozeboom LE, Knight KE, Laven H, Drummond FH, Christophers SR, Shute PG, 1951. The Culex pipiens complex. Trans R Entomol Soc 7: 331–343.
  3. Spielman A, 2001. Structure and seasonality of Neartic Culex pipiens populations. Proc NY Acad Sci 951: 220–234.
  4. Spielman A, Wong J, 1973. Studies on autogeny in natural populations of Culex pipiens. III. Midsummer preparation for hibernation in anautogenous populations. J Med Entomol 10: 319–324.
  5. Eldridge BF, 1966. Environmental control of ovarian development in mosquitoes of the Culex pipiens complex. Science 151: 826–828.
  6. US Naval Observatory, 1946. Tables of Sunrise, Sunset, and Twilight. American Ephemeris (Suppl). Washington, DC: US Gov. Printing Office.
  7. Fonseca DM, Lapointe DA, Fleischer RC, 2000. Bottlenecks and multiple introductions: population genetics of the vector of avian malaria in Hawaii. Mol Ecol 9: 1803–1814.
  8. Fonseca DM, Keyghobadi N, Malcolm CA, Mehmet C, Schaffner F, Mogi M, Fleischer RC, Wilkerson RC, 2004. Emerging vectors in the Culex pipiens complex. Science 303: 1535–1538.
  9. Fonseca DM, Smith JL, Wilkerson RC, Fleischer RC, 2006. Pathways of expansion and multiple introductions illustrated by large genetic differentiation among worldwide populations of the Southern house mosquito. Am J Trop Med Hyg 74: 284–289.
  10. Cornel AJ, McAbee RD, Rasgon J, Stanich MA, Scott TW, Coetzee M, 2003. Difference in extent of genetic introgression between Culex pipiens and Culex quinquefasciatus (Diptera: Culicidae) in California and South Africa. J Med Entomol 40: 36–51.
  11. Nayar JK, Knight JW, Munstermann LE, 2003. Temporal and geographic genetic variation in Culex pipiens quinquefasciatus (Diptera: Culicidae) from Florida. J Med Entomol 40: 882–889.
  12. Urbanelli S, Silvestrini F, Reisen WK, De Vito E, Bullini L, 1997. Californian hybrid zone between Culex pipiens pipiens and Culex pipiens quinquefasciatus revisited (Diptera:Culicidae). J Med Entomol 34: 116–127.
  13. Pryor SC, Daly J, 1991. Temporal variation in morphological and genetic characteristics within a hybrid population of Culex pipiens (Diptera: Culicidae). J Med Entomol 28: 481–486.
  14. Tabachnik WJ, Powell JR, 1983. Genetic analysis of Culex pipiens populations in the Central Valley of California. Ann Entomol Soc Am 76: 715–720.
  15. Edillo FE, Tripét F, McAbee RD, Foppa IM, Lanzaro GC, Cornel AJ, Spielman A, 2003. A set of broadly applicable microsatellite markers for analyzing the structure of Culex pipiens (Diptera: Culicidae) populations. J Med Entomol 44: 145–149.
  16. Keyghobadi N, Matrone M, Ebel GD, Kramer LD, Fonseca DM, 2004. Microsatellite loci from the northern house mosquito (Culex pipiens), a principal vector of West Nile virus in North America. Mol Ecol Notes 4: 20–22.
  17. Reiter P, 1986. A standardized procedure for the quantitative surveillance of certain Culex mosquitoes by egg raft collection. J Am Mosq Control Assoc 2: 219–221.
  18. Dodge HR, 1966. Studies on mosquito larvae II. The first instar larvae of North American Culicidae and of world Anophelinae. Can Entomol 98: 337–393.
  19. Sundararaman S, 1949. Biometrical studies on intergradation in the genitalia in certain populations of Culex pipiens and Culex quinquefasciatus in the United States. Am J Hyg 50: 307–314.
  20. Spielman A, 1966. The functional anatomy of the copulatory apparatus of male Culex pipiens (Diptera: Culicidae). Ann Entomol Soc Am 59: 309–314.
  21. Crabtree MB, Savage HM, Miller BR, 1995. Development of species-diagnostic polymerase chain reaction assay for the identification of Culex vectors of St. Louis encephalitis virus based on interspecies sequence variation in ribosomal DNA spacers. Am J Trop Med Hyg 53: 105–109.
  22. Raymond M, Rousset F, 1995. GENEPOP: population genetics software for exact tests and ecumenism. J Hered 86: 248–249.
  23. Weir BS, Cockerham CC, 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370.
  24. Weir BS, 1990. Genetic Data Analysis: Methods for Discrete Population Genetic Data. Sunderland, MA: Sinauer Associates.
  25. Slatkin M, 1995. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139: 457–462.
  26. Wright S, 1978. Evolution and the Genetics of Populations, Vol. 4. Variability Within and Among Natural Populations. Chicago: University of Chicago Press.
  27. Goudet J, Raymond M, De Mee s T, Rousset F, 1996. Testing differentiation in diploid populations. Genetics 144: 1933–1940.
  28. Barton NH, Slatkin M, 1986. A quasi-equilibrium theory of the distribution of rare alleles in a subdivided population. J Hered 56: 409–415.
  29. Lehmann T, Licht M, Elissa N, Maega BT, Chimumbwa JM, Watsenga FT, Wondji CS, Simard F, Hawley WA, 2003. Population structure of Anopheles gambiae in Africa. J Hered 94: 133–147.
  30. Lanzaro GC, Touré YT, Carnahan J, Zheng G, Dolo G, Traore S, Petrarca V, Vernick KD, Taylor CE, 1998. Complexities in the genetic structure of Anopheles gambiae populations in west Africa as revealed by microsatellite. Proc Natl Acad Sci USA 95: 14260–14265.
  31. Reisen WK, Milky MM, Meyer RP, 1992. Population dynamics of adult Culex mosquitoes (Diptera: Culicidae) along the Kern River, Kern County, California, in 1990. J Med Entomol 29: 531–543.
  32. Failloux AB, Raymond M, Ung A, Chevillon C, Pasteur N, 1997. Genetic differentiation associated with commercial traffic in the Polynesian mosquito, Aedes polynesiensis Marks 1951. Biol J Linnean Soc 60: 107–118.
  33. Julvez J, Mouchet J, Ragavoodoo C, 1990. Epidémiologie historique du paludisme dans l’archipel des Mascareignes (Océan Indien). Ann Soc Belg Med Trop 70: 249–261.
  34. Meola R, Readio J, 1987. Juvenile hormone regulation of the second biting cycle in Culex pipiens. J Insect Physiol 33: 751–754.
  35. Robich RM, Denlinger DL, 2005. Diapause in the mosquito Culex pipiens evokes a metabolic switch from blood feeding to sugar gluttony. Proc Natl Acad Sci USA 102: 15912–15917.
  36. Madder DJ, Surgeoner GA, Helson BV, 1983. Induction of diapause in Culex pipiens and Culex restuans (Diptera: Culicidae) in Southern Ontario. Can Entomol 115: 877–883.

Data & Media loading...

Supplementary Data

Supplementary table 1

Supplementary table 2

  • Received : 18 Nov 2008
  • Accepted : 15 Jul 2009

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error