1921
Volume 81, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

The prevalence, host preference, and rate of spp. infection of sand fly species are important parameters for incrimination of parasite vectors. We applied polymerase chain reaction (PCR)-based and enzyme-linked immunosorbent assay (ELISA) methods to detect spp. parasites and blood meals within individual sand flies in the most important visceral leishmaniasis (VL) focus in northwestern Iran. spp. minicircles (kinetoplast DNA) were found in 14 (0.9%) of 1,569 female specimens. Sequence analysis of 650 basepairs of an internal transcribed spacer ribosomal DNA gene identified in 12 specimens and -like parasites in 2 specimens. Nine (64.3%) of 14 of the spp.–positive sand flies were . Blood meal identification of host DNA within sand flies by PCR-based and ELISA methods showed that 30% and 28%, respectively, were positive for human blood. Results of this study showed that is the most prevalent, infected, and anthropophagic sand fly and plays a major role in VL transmission in the region studied.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.2009.08-0469
2009-10-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/14761645/81/4/0810572.html?itemId=/content/journals/10.4269/ajtmh.2009.08-0469&mimeType=html&fmt=ahah

References

  1. Choi CM, Lerner EA, 2001. Leishmaniasis as an emerging infection. J Investig Dermatol Symp Proc 6: 175–182. [Google Scholar]
  2. Desjeux P, 2004. Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis 27: 305–318. [Google Scholar]
  3. Cupolillo E, Medina-Costa E, Noyes H, Momen H, Grimaldi G Jr, 2000. Arevised classification for Leishmania and Endotrypanum. Parasitol Today 16: 142–144. [Google Scholar]
  4. Lachaud L, Marchergui-Hammami S, Chabbert E, Dereure J, Dedet JP, Bastien P, 2002. Comparison of six PCR methods using peripheral blood for detection of canine visceral leishmaniasis. J Clin Microbiol 40: 210–215. [Google Scholar]
  5. World Health Organization, 1990. Control of the leishmaniases. Report of a WHO expert committee. World Health Organ Tech Rep Ser 793: 1–158. [Google Scholar]
  6. Rassi Y, Kaverizadeh F, Javadian E, Mohebali M, 2004. First report on natural promastigote infection of Phlebotomus caucasicus in a new focus visceral leishmaniasis in north west Iran. Iran J Public Health 33: 70–72. [Google Scholar]
  7. Mohebali M, Hamzavi Y, Edrissian GH, Forouzani A, 2001. Seroepidemiological study of visceral leishmaniasis among humans and animal reservoirs in Bushehr province, Islamic Republic of Iran. Eastern Mediterannean Health J 7: 912–917. [Google Scholar]
  8. Rassi Y, Javadian E, Nadim A, 1997. Natural promastigote Infection of sandflies and its first occurrence in S. dentata in Ardebil province, North West of Iran. Iranian J Public Health 6: 7–12. [Google Scholar]
  9. Voller A, De Savigny D, 1981. Diagnostic serology of tropical parasitic disease. J Immunol Methods 46: 1–29. [Google Scholar]
  10. Kreutzer RD, Christensen HA, 1980. Characterization of Leishmania spp. by isoenzyme electrophoresis. Am J Trop Med Hyg 29: 199–208. [Google Scholar]
  11. Tibayrenc M, Ayala FJ, 1999. Evolutionary genetics of Trypanosoma and Leishmania. Microbes Infect 1: 465–472. [Google Scholar]
  12. Alvar J, Barker JR, 2002. Molecular tools for epidemiological studies and diagnosis of leishmaniasis and selected other parasitic diseases. Trans R Soc Trop Med Hyg 96 (Suppl. 1): S1–S250. [Google Scholar]
  13. Rodriguez N, Aguilar CM, Barrios MA, Barker DC, 1999. Detection of Leishmania braziliensis in naturally infected individual sand flies by the polymerase chain reaction. Trans R Soc Trop Med Hyg 93: 47–49. [Google Scholar]
  14. Aransay AM, Scoulica E, Tselentis Y, 2000. Detection and identification of Leishmania DNA within naturally infected sand flies by seminested PCR on minicircle kinetoplast DNA. Appl Environ Microbiol 66: 1933–1938. [Google Scholar]
  15. Arnot DE, Barker DC, 1981. Biochemical identification of cutaneous Leishmania by analysis of kinetplast DNA II. Sequence homologies in Leishmania kDNA. Mol Biochem Parasitol 3: 47–56. [Google Scholar]
  16. Englund PT, 1981. Kinetoplast DNA. Levandowsky M, Hunter SH, eds. Biochemistry and Physiology of Protozoa. Second edition. New York: Academic Press, 333–383.
  17. Hillis DM, Moritz C, Porter CA, Baker RJ, 1991. Evidence for biased gene conversion in concerted evolution of ribosomal DNA. Science 251: 308–310. [Google Scholar]
  18. Haralambous C, Antoniou M, Pratlong F, Dedet JP, Soteriadou K, 2008. Development of a molecular assay specific for the Leishmania donovani complex that discriminates L. donovani/Leishmania infantum zymodemes: a useful tool for typing MON–1. Diagn Microbiol Infect Dis 60: 33–42. [Google Scholar]
  19. Anders G, Eisenberger CL, Jonas F, Greenblatt CL, 2002. Distinguishing Leishmania tropica and Leishmania major in the Middle East using the polymerase chain reaction with kinetoplast DNA-specific primers. Trans R Soc Trop Med Hyg 96 (Suppl 1): S87–S92. [Google Scholar]
  20. Ready PD, Lainson R, Shaw JJ, Souza AA, 1991. DNA probes for distinguishing Psychodopygus wellcomei from Psychodopygus complexus (Diptera: Psychodidae). Mem Inst Oswaldo Cruz 86: 41–49. [Google Scholar]
  21. Cupolillo E, Grimaldi G Jr, Momen H, Beverly SM, 1995. Intergenic region typing (IRT): a rapid molecular approach to the characterization and evolution of Leishmania. Mol Biochem Parasitol 73: 145–155. [Google Scholar]
  22. Thompson JD, Higgins DG, Gibson TJ, 1994. CLUSTAL W: 332 improving the sensitivity of progressive multiple sequence alignment through sequence weighting position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680. [Google Scholar]
  23. Steiner JJ, Poklemba CJ, Fjellstrom RG, Elliott LF, 1995. A rapid one-tube genomic DNA extraction process for PCR and RAPD analyses. Nucleic Acids Res 23: 2569–2570. [Google Scholar]
  24. Oshaghi MA, Chavshin AR, Vatandoost H, 2006. Analysis of mosquito bloodmeals using RFLP markers. Exp Parasitol 114: 259–264. [Google Scholar]
  25. Kocher TD, Thomas WK, Meyer A, Edwards SV, Paabo S, Villablanca FX, Wilson AC, 1989. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86: 6196–6200. [Google Scholar]
  26. Boakye DA, Tang J, Truc P, Merriweather A, Unnasch TR, 1999. Identification of bloodmeals in haematophagous diptera by cytochrome B heteroduplex analysis. Med Vet Entomol 13: 282–287. [Google Scholar]
  27. Kent RJ, Norris DE, 2005. Identification of mammalian blood meals in mosquitoes by a multiplexed polymerase chain reaction targeting cytochrome b. Am J Trop Med Hyg 73: 336–342. [Google Scholar]
  28. Vincze T, Posfai J, Roberts RJ, 2003. NEBcutter: a program to cleave DNA with restriction enzymes. Nucleic Acids Res 31: 3688–3691. [Google Scholar]
  29. Edrissian GH, Manochehri AV, Hafizi A, 1985. Application of an enzyme-linked immunosorbent assay (ELISA) for determination of the human blood index in anopheline mosquitoes collected in Iran. J Am Mosq Cont Assoc 1: 349–352. [Google Scholar]
  30. Parvizi P, Mazloumi-Gavgani AS, Davies CR, Courtenay O, Ready PD, 2008. Two Leishmania species circulating in the Kaleybar focus of infantile visceral leishmaniasis, northwest Iran: implications for deltamethrin dog collar intervention. Trans R Soc Trop Med Hyg 102: 891–897. [Google Scholar]
  31. Maroli M, Gramiccia M, Gradoni L, 1987. Natural infection of Phlebotomus perfiliewi with Leishmania infantum in a cutaneous leishmaniasis focus of the Abruzzi region, Italy. Trans R Soc Trop Med Hyg 81: 596–598. [Google Scholar]
  32. Gállego M, Pratlong F, Fisa R, Riera C, Rioux JA, Dedet JP, Portús M, 2001. The life-cycle of Leishmania infantum MON-77 in the Priorat (Catalonia, Spain) involves humans, dogs and sandflies; also literature review of distribution and hosts of L. infantum zymodemes in the Old World. Trans R Soc Trop Med Hyg 95: 269–271. [Google Scholar]
  33. Izri MA, Belazzoug S, 1993. Phlebotomus (Larroussius) perfiliewi naturally infected with dermotropic Leishmania infantum at Tenes, Algeria. Trans R Soc Trop Med Hyg 87: 399. [Google Scholar]
  34. Killick-Kendrick R, 1990. The life-cycle of Leishmania in the sand-fly with special reference to the form infective to the vertebrate host. Ann Parasitol Hum Comp 65 (Suppl 1): 37–42. [Google Scholar]
  35. Zhang LM, Leng YJ, 1997. Eighty-year research of phlebotomine sandflies (Diptera: Psychodidae) in China (1915–1995). II. Phlebotomine vectors of leishmaniasis in China. Parasite 4: 299–306. [Google Scholar]
  36. Nadim A, Navid-Hamidi E, Javadian E, Tahvildar-bidrouni G, Amini H, 1987. Present status of kala-azar in Iran. Am J Trop Med Hyg 27: 25–28. [Google Scholar]
  37. Sacks D, 2001. Leishmania-sand fly interactions controlling species-specific vector competence. Cell Microbiol 3: 189–196. [Google Scholar]
  38. Osman OF, Oskam L, Kroon NC, School GJ, Khalil ET, EL-Hassan AM, Ziglstra EE, Kager PA, 1988. Use of PCR for diagnosis of post kala-azar dermal leishmaniasis (PKDL). J Clin Microbiol 36: 1621–1624. [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.2009.08-0469
Loading
/content/journals/10.4269/ajtmh.2009.08-0469
Loading

Data & Media loading...

  • Received : 14 Sep 2008
  • Accepted : 28 Dec 2008

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error