Volume 81, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Magnetic resonance studies offer a new way through the impasse that now seems to block further progress in disentangling the pathogenesis and improving the treatment of cerebral malaria, a catastrophic neurologic complication of infection with . The underlying mechanisms responsible for coma in cerebral malaria are still unknown and the relative contributions of the microvascular sequestration of infected erythrocytes, the inflammatory response to , disordered hemostasis, and other factors remain controversial. For more than a century, neuropathologic studies have provided the basis for concepts of causation of cerebral malaria. Magnetic resonance techniques now offer non-invasive means of determining essential anatomic, metabolic, biochemical, and functional features of the brain in patients with cerebral malaria during life that could transform our understanding of the pathogenesis of cerebral malaria and lead to the development of new neuroprotective treatments.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. World Health Organization, 2000. Severe falciparum malaria. Trans R Soc Trop Med Hyg 94: 1–90. [Google Scholar]
  2. Mishra SK, Newton CR, 2009. Diagnosis and management of the neurological complications of falciparum malaria. Nat Rev Neurol 5: 189–198. [Google Scholar]
  3. Boivin MJ, Bangirana P, Byarugaba J, Opoka RO, Idro R, Jurek AM, John CC, 2007. Cognitive impairment after cerebral malaria in children: a prospective study. Pediatrics 119: e360–e366. [Google Scholar]
  4. Idro R, Carter JA, Fegan G, Neville BG, Newton CR, 2006. Risk factors for persisting neurological and cognitive impairments following cerebral malaria. Arch Dis Child 91: 142–148. [Google Scholar]
  5. John CC, Bangirana P, Byarugaba J, Opoka RO, Idro R, Jurek AM, Wu B, Boivin MJ, 2008. Cerebral malaria in children is associated with long-term cognitive impairment. Pediatrics 122: e92–e99. [Google Scholar]
  6. Hunt NH, Golenser J, Chan-Ling T, Parekh S, Rae C, Potter S, Medana IM, Miu J, Ball HJ, 2006. Immunopathogenesis of cerebral malaria. Int J Parasitol 36: 569–582. [Google Scholar]
  7. Idro R, Jenkins NE, Newton CR, 2005. Pathogenesis, clinical features, and neurological outcome of cerebral malaria. Lancet Neurol 4: 827–840. [Google Scholar]
  8. van der Heyde HC, Nolan J, Combes V, Gramaglia I, Grau GE, 2006. A unified hypothesis for the genesis of cerebral malaria: sequestration, inflammation and hemostasis leading to micro-circulatory dysfunction. Trends Parasitol 22: 503–508. [Google Scholar]
  9. Beare NA, Harding SP, Taylor TE, Lewallen S, Molyneux ME, 2009. Perfusion abnormalities in children with cerebral malaria and malarial retinopathy. J Infect Dis 199: 263–271. [Google Scholar]
  10. Marchiafava E, Bignami A, 1894. On Summer-Autumnal Malaria Fevers. Malaria and the Parasites of Malaria Fevers, London: New Sydenham Society, 1–234.
  11. Berendt AR, Tumer GD, Newbold CI, 1994. Cerebral malaria: the sequestration hypothesis. Parasitol Today 10: 412–414. [Google Scholar]
  12. Newton CR, Hien TT, White N, 2000. Cerebral malaria. J Neurol Neurosurg Psychiatry 69: 433–441. [Google Scholar]
  13. Moller HE, Kurlemann G, Putzler M, Wiedermann D, Hilbich T,V Fiedler B, 2005. Magnetic resonance spectroscopy in patients with MELAS. J Neurol Sci 229–230: 131–139. [Google Scholar]
  14. Petersen ET, Zimine I, Ho YC, Golay X, 2006. Non-invasive measurement of perfusion: a critical review of arterial spin labelling techniques. Br J Radiol 79: 688–701. [Google Scholar]
  15. Laureys S, Owen AM, Schiff ND, 2004. Brain function in coma, vegetative state, and related disorders. Lancet Neurol 3: 537–546. [Google Scholar]
  16. White NJ, Warrell DA, Looareesuwan S, Chanthavanich P, Phillips RE, Pongpaew P, 1985. Pathophysiological and prognostic significance of cerebrospinal-fluid lactate in cerebral malaria. Lancet 1: 776–778. [Google Scholar]
  17. Medana IM, Hien TT, Day NP, Phu NH, Mai NT, Chu’ong LV, Chau TT, Taylor A, Salahifar H, Stocker R, Smythe G, Turner GD, Farrar J, White NJ, Hunt NH, 2002. The clinical significance of cerebrospinal fluid levels of kynurenine pathway metabolites and lactate in severe malaria. J Infect Dis 185: 650–656. [Google Scholar]
  18. Medana IM, Day NP, Hien TT, Mai NT, Bethell D, Phu NH, Farrar J, Esiri MM, White NJ, Turner GD, 2002. Axonal injury in cerebral malaria. Am J Pathol 160: 655–666. [Google Scholar]
  19. Medana IM, Idro R, Newton CR, 2007. Axonal and astrocyte injury markers in the cerebrospinal fluid of Kenyan children with severe malaria. J Neurol Sci 258: 93–98. [Google Scholar]
  20. Ross AJ, Sachdev PS, 2004. Magnetic resonance spectroscopy in cognitive research. Brain Res Brain Res Rev 44: 83–102. [Google Scholar]
  21. Penet MF, Viola A, Confort-Gouny S, Le Fur Y, Duhamel G, Kober F, Ibarrola D, Izquierdo M, Coltel N, Gharib B, Grau GE, Cozzone PJ, 2005. Imaging experimental cerebral malaria in vivo: significant role of ischemic brain edema. J Neurosci 25: 7352–7358. [Google Scholar]
  22. Penet MF, Kober F, Confort-Gouny S, Le Fur Y, Dalmasso C, Coltel N, Liprandi A, Gulian JM, Grau GE, Cozzone PJ, Viola A, 2007. Magnetic resonance spectroscopy reveals an impaired brain metabolic profile in mice resistant to cerebral malaria infected with Plasmodium berghei ANKA. J Biol Chem 282: 14505–14514. [Google Scholar]
  23. von Zur Muhlen C, Sibson NR, Peter K, Campbell SJ, Wilainam P, Grau GE, Bode C, Choudhury RP, Anthony DC, 2008. A contrast agent recognizing activated platelets reveals murine cerebral malaria pathology undetectable by conventional MRI. J Clin Invest 118: 1198–1207. [Google Scholar]
  24. Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K, 2005. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 53: 1432–1440. [Google Scholar]
  25. Sugiyama M, Ikeda E, Kawai S, Higuchi T, Zhang H, Khan N, Tomiyoshi K, Inoue T, Yamaguchi H, Katakura K, Endo K, Suzuki M, 2004. Cerebral metabolic reduction in severe malaria: fluorodeoxyglucose-positron emission tomography imaging in a primate model of severe human malaria with cerebral involvement. Am J Trop Med Hyg 71: 542–545. [Google Scholar]
  26. Khuong M, Balloul H, De Brucker T, Vachon F, Wolff M, Coulaud J, 1990. Un cas de syndrome cérébelleux au décours d’un neuropaludisme grave: lésions observées en IRM. Med Mal Infect 20: 157–159. [Google Scholar]
  27. Kampfl AW, Birbamer GG, Pfausler BE, Haring HP, Schmutzhard E, 1993. Isolated pontine lesion in algid cerebral malaria: clinical features, management, and magnetic resonance imaging findings. Am J Trop Med Hyg 48: 818–822. [Google Scholar]
  28. Saissy JM, Pats B, Renard JL, Dubayle P, Herve R, 1996. Isolated bulb lesion following mild Plasmodium falciparum malaria diagnosed by magnetic resonance imaging. Intensive Care Med 22: 610–611. [Google Scholar]
  29. Cordoliani YS, Sarrazin JL, Felten D, Caumes E, Leveque C, Fisch A, 1998. MR of cerebral malaria. AJNR Am J Neuroradiol 19: 871–874. [Google Scholar]
  30. Sakai O, Barest GD, 2005. Diffusion-weighted imaging of cerebral malaria. J Neuroimaging 15: 278–280. [Google Scholar]
  31. Gamanagatti S, Kandpal H, 2006. MR imaging of cerebral malaria in a child. Eur J Radiol 60: 46–47. [Google Scholar]
  32. Looareesuwan S, Wilairatana P, Krishna S, Kendall B, Vannaphan S, Viravan C, White NJ, 1995. Magnetic resonance imaging of the brain in patients with cerebral malaria. Clin Infect Dis 21: 300–309. [Google Scholar]
  33. Das CJ, Sharma R, 2007. Central pontine myelinolysis in a case of cerebral malaria. Br J Radiol 80: e293–e295. [Google Scholar]
  34. Yadav P, Sharma R, Kumar S, Kumar U, 2008. Magnetic resonance features of cerebral malaria. Acta Radiol 49: 566–569. [Google Scholar]
  35. Laothamatas J, Tosti CL, Golay X, Van Cauteren M, Lekprasert V, Tangpukdee N, Krudsood S, Leowattana W, Wilairatana P, Swaminathan SV, DeLaPaz RL, Brown TR, Looareesuwan S, Brittenham GM, 2006. Magnetic resonance imaging (MRI) evidence of white matter injury in patients with acute uncomplicated falciparum malaria. Am J Trop Med Hyg 75: 196 (abstract). [Google Scholar]
  36. Tosti CL, Laothamatas J, Golay X, Swaminathan SV, Van Cauteren M, Murdoch J, Lekprasert V, Tangpukdee N, Krudsood S, Leowattana W, Wilairatana P, DeLaPaz RL, Brown TR, Brittenham GM, 2007. Cerebrospinal fluid lactate in P. falciparum malaria: measurement by chemical shift imaging at 3 Tesla. Proc Intl Soc Mag Reson Med 15: 398. [Google Scholar]
  • Received : 11 Aug 2007
  • Accepted : 25 Jun 2009

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error