Volume 79, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


We determined abundance of mosquitoes and presence of dengue virus (DENV) in females collected from premises of laboratory-confirmed dengue patients over a 12-month period (March 2007 to February 2008) in Merida, Mexico. Backpack aspiration from 880 premises produced 1,836 females and 1,292 males indoors (predominantly from bedrooms) and 102 females and 108 males from patios/backyards. The mean weekly indoor catch rate per home peaked at 7.8 females in late August. Outdoor abundances of larvae or pupae were not predictive of female abundance inside the home. DENV-infected females were recovered from 34 premises. Collection of DENV-infected females from homes of dengue patients up to 27 days after the onset of symptoms (median, 14 days) shows the usefulness of indoor insecticide application in homes of suspected dengue patients to prevent their homes from becoming sources for dispersal of DENV by persons visiting and being bitten by infected mosquitoes.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Gubler DJ, 2004. The changing epidemiology of yellow fever and dengue, 1900 to 2003: full circle? Comp Immunol Microbiol Infect Dis 27 : 319–330. [Google Scholar]
  2. Guzman MG, Kouri G, 2002. Dengue: an update. Lancet Infect Dis 2 : 33–42. [Google Scholar]
  3. WHO, 2007. Scientific Working Group Report on Dengue. Geneva, Switzerland: WHO.
  4. Gubler DJ, 2002. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 10 : 100–103. [Google Scholar]
  5. Guzman MG, Kouri G, 2003. Dengue and dengue hemorrhagic fever in the Americas: lessons and challenges. J Clin Virol 27 : 1–13. [Google Scholar]
  6. Wilson ME, Chen LH, 2002. Dengue in the Americas. Dengue Bull 26 : 45–61. [Google Scholar]
  7. Service MW, 1992. Importance of ecology in Aedes aegypti control. Southeast Asian J Trop Med Public Health 23 : 681–690. [Google Scholar]
  8. Kuno G, 1995. Review of the factors modulating dengue transmission. Epidemiol Rev 17 : 321–335. [Google Scholar]
  9. Reiter P, Gubler DJ, 1997. Surveillance and control of urban dengue vectors. Gubler DJ, Kuno G, eds. Dengue and Dengue Hemorrhagic Fever. Cambridge: CABI Publishing, 425–462.
  10. Halstead SB, 2008. Dengue virus–mosquito interactions. Annu Rev Entomol 53 : 273–291. [Google Scholar]
  11. Pant CP, Mount GA, Jatanasen S, Mathis HL, 1971. Ultra-low-volume ground aerosols of technical malathion for the control of Aedes aegypti L. Bull World Health Organ 45 : 805–817. [Google Scholar]
  12. Pant CP, Nelson MJ, Mathis HL, 1973. Sequential application of ultra-low-volume ground aerosols of fenitrothion for sustanined control of Aedes aegypti. Bull World Health Organ 48 : 455–459. [Google Scholar]
  13. Lofgren CS, Ford HR, Tonn RJ, Bang YH, Siribodhi P, 1970. The effectiveness of ultra-low-volume applications of malathion at a rate 3 U.S. fluid ounces per acre in controlling Aedes aegypti in Thailand. Bull World Health Organ 42 : 27–35. [Google Scholar]
  14. Lofgren CS, Ford HR, Tonn RJ, Jatanasen S, 1970. The effectiveness of ultra-low-volume applications of malathion at a rate 6 U.S. fluid ounces per acre in controlling Aedes aegypti in a large-scale test at Nakhon Swan, Thailand. Bull World Health Organ 42 : 15–25. [Google Scholar]
  15. Hudson JE, 1986. The 1982 emergency ultralow volume spray campaign against Aedes aegypti adults in Paramaribo, Suriname. PAHO Bull. 20 : 294–303. [Google Scholar]
  16. Fox I, Specht P, 1988. Evaluating ultra-low volume ground applications of malathion against Aedes aegypti using landing counts in Puerto Rico, 1980–84. J Am Mosq Control Assoc 4 : 163–167. [Google Scholar]
  17. Perich MJ, Davila G, Turner A, Garcia A, Nelson M, 2000. Behavior of resting Aedes aegypti (Culicidae: Diptera) and its relation to ultra-low volume adulticide efficacy in Panama City, Panama. J Med Entomol 37 : 541–546. [Google Scholar]
  18. Vythilingam I, Panart P, 1991. A field trial on the comparative effectiveness of malathion and Resigen by ULV application on Aedes aegypti. Southeast Asian J Trop Med Public Health 22 : 102–107. [Google Scholar]
  19. Koenraadt CJM, Aldstadt J, Kijchalao U, Kengluecha A, Jones JW, Scott TW, 2007. Spatial and temporal patterns in the recovery of Aedes aegypti (Diptera: Culicidae) populations after insecticide treatment. J Med Entomol 44 : 65–71. [Google Scholar]
  20. Perich MJ, Tidwell MA, Williams DC, Sardelis MR, Pena CJ, Mandeville D, Boobar LR, 1990. Comparison of ground and aerial ultra-low volume applications of malathion against Aedes aegypti in Santo Domingo, Dominican Republic. J Am Mosq Control Assoc 6 : 1–6. [Google Scholar]
  21. Chadee DD, 1988. Effects of ‘closed’ houses on the Aedes aegypti eradication programme in Trinidad. Med Vet Entomol 2 : 193–198. [Google Scholar]
  22. Trpis M, Hausermann W, 1975. Demonstration of differential domesticity of Aedes aegypti (L.) (Diptera: Culicidae) in Africa by mark-release-recapture. Bull Entomol Res 65 : 199–208. [Google Scholar]
  23. Yasuno M, Tonn RJ, 1970. A study of biting habits of Aedes aegypti in Bangkok, Thailand. Bull World Health Organ 43 : 319–325. [Google Scholar]
  24. Edman J, Kittayapong P, Linthicum K, Scott T, 1997. Attractant resting boxes for rapid collection and surveillance of Aedes aegypti (L.) inside houses. J Am Mosq Control Assoc 13 : 24–27. [Google Scholar]
  25. Kittayapong P, Linthicum K, Edman JD, Scott TW, 1997. Further evaluation of indoor resting boxes for Aedes aegypti surveillance. Dengue Bull 21 : 77–83. [Google Scholar]
  26. Shetty PS, Dhanda V, Deobhankar RB, 1978. A year round study of Aedes aegypti in Barsi town, Maharashtra State. Indian J Med Res 67 : 942–946. [Google Scholar]
  27. Tidwell MA, Williams DC, Carvalho Tidwell T, Pena CJ, Gwinn TA, Focks DA, Zaglul A, Mercedes M, 1990. Baseline data on Aedes aegypti populations in Santo Domingo, Dominican Republic. J Am Mosq Control Assoc 6 : 514–522. [Google Scholar]
  28. Davila G, Nelson MJ, Turner A, Garcia A, 1991. Resting sites for Aedes aegypti in Panama. J Am Mosq Control Assoc 7 : 633–634. [Google Scholar]
  29. Kohn M, 1990. A survey on indoor resting mosquitoes in Phnom Penh, Kampuchea. Folia Parasitol (Praha) 37 : 165–174. [Google Scholar]
  30. Schultz GW, 1993. Seasonal abundance of dengue vectors in Manila, Republic of the Philippines. Southeast Asian J Trop Med Public Health 24 : 369–375. [Google Scholar]
  31. Tewari SC, Thenmozhi V, Katholi CR, Manavalan R, Munirathinam A, Gajanana A, 2004. Dengue vector prevalence and virus infection in a rural area in south India. Trop Med Int Health 9 : 499–507. [Google Scholar]
  32. Romero-Vivas CME, Falconar AKI, 2005. Investigation of relationships between Aedes aegypti egg, larvae, pupae, and adult density indices where their main breeding sites were located indoors. J Am Mosq Control Assoc 21 : 15–21. [Google Scholar]
  33. Rodriguez-Figueroa L, Rigau-Perez JG, Suarez EL, Reiter P, 1995. Risk factors for dengue infection during an outbreak in Yanes, Puerto Rico in 1991. Am J Trop Med Hyg 52 : 496–502. [Google Scholar]
  34. Clark GG, Seda H, Gubler DJ, 1994. Use of the “CDC backpack aspirator” for surveillance of Aedes aegypti in San Juan, Puerto Rico. J Am Mosq Control Assoc 10 : 119–124. [Google Scholar]
  35. Tun-Lin W, Kay BH, Barnes A, Forsyth S, 1996. Critical examination of Aedes aegypti indices: correlations with abundance. Am J Trop Med Hyg 54 : 543–547. [Google Scholar]
  36. Ashford DA, Savage HM, Hajjeh RA, McReady J, Bartholomew DM, Spiegel RA, Vorndam V, Clark GG, Gubler DG, 2003. Outbreak of dengue fever in Palau, Western Pacific: risk factors for infection. Am J Trop Med Hyg 69 : 135–140. [Google Scholar]
  37. Barrera R, Delgado N, Jiménez M, Valero S, 2002. Eco-epidemiological factors associated with hyperendemic dengue haemorrhagic fever in Maracay City, Venezuela. Dengue Bull 26 : 84–95. [Google Scholar]
  38. Getis A, Morrison AC, Gray K, Scott TW, 2003. Characteristics of the spatial pattern of the dengue vector, Aedes aegypti, in Iquitos, Peru. Am J Trop Med Hyg 69 : 494–505. [Google Scholar]
  39. Morrison AC, Astete H, Chapilliquen F, Ramirez-Prada C, Diaz G, Getis A, Gray K, Scott TW, 2004. Evaluation of a sampling methodology for rapid assessment of Aedes aegypti infestation levels in Iquitos, Peru. J Med Entomol 41 : 502–510. [Google Scholar]
  40. Scott TW, Morrison AC, Lorenz LH, Clark GG, Strickman D, Kittayapong P, Zhou H, Edman JD, 2000. Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: population dynamics. J Med Entomol 37 : 77–88. [Google Scholar]
  41. Barrera R, Amador M, Diaz A, Smith J, Munoz-Jordan JL, Rosario Y, 2008. Unusual productivity of Aedes aegypti in septic tanks and its implications for dengue control. Med Vet Entomol 22 : 62–69. [Google Scholar]
  42. Macdonald WW, 1956. Aedes aegypti in Malaya. I. Distribution and dispersal. Ann Trop Med Parasitol 50 : 385–398. [Google Scholar]
  43. Halstead SB, Scanlon JE, Umpaivit P, Udomsakdi S, 1969. Dengue and chikungunya virus infection in man in Thailand, 1962–1964. IV. Epidemiologic studies in the Bangkok metropolitan area. Am J Trop Med Hyg 18 : 997–1021. [Google Scholar]
  44. Ilkal MA, Dhanda V, Hassan MM, Mavale M, Mahadev PVM, Shetty PS, Guttikar SN, Banerjee K, 1991. Entomological investigations during outbreaks of dengue fever in certain villages in Maharashtra state. Indian J Med Res 93 : 174–178. [Google Scholar]
  45. Chow VTK, Chan YC, Yong R, Lee KM, Lim LK, Chung YK, Lam-Phua SG, Tan BT, 1998. Monitoring of dengue viruses in field-caught Aedes aegypti and Aedes albopictus mosquitoes by a type-specific polymerase chain reaction and cycle sequencing. Am J Trop Med Hyg 58 : 578–586. [Google Scholar]
  46. Chung YK, Pang FY, 2002. Dengue virus infection rate in field populations of female Aedes aegypti and Aedes albopictus in Singapore. Trop Med Int Health 7 : 322–330. [Google Scholar]
  47. Kow CY, Koon LL, Yin PF, 2001. Detection of dengue viruses in field caught male Aedes aegypti and Aedes albopictus (Diptera:Culicidae) in Singapore by type-specific PCR. J Med Entomol 38 : 475–479. [Google Scholar]
  48. Pankhong P, Siriprasertkul W, Patpoparn S, Srisuphanunt M, Rojanapremsuk J, Sithiprasasna R, Coleman RE, Nisalak A, Endy TP, Attatippaholkun MK, Attatippaholkun WH, 2002. Molecular serotyping of dengue viruses in field-caught Aedes mosquitos by in-house RNA extraction/RT-PCR reagent kits. Southeast Asian J Trop Med Public Health 33 (Suppl. 3): 139–144. [Google Scholar]
  49. Kabilan L, Velayutham T, Sundaram B, Tewari SC, Natarajan A, Rathnasamy R, Satyanarayana K, 2004. Field- and laboratory-based active dengue surveillance in Chennai, Tamil Nadu, India: observations before and during the 2001 dengue epidemic. Am J Infect Control 32 : 391–396. [Google Scholar]
  50. Sithiprasasna R, Patpoparn S, Attatippaholkun W, Suvannadabba S, Srisuphanunt M, 2004. The geographic information system as an epidemiological tool in the surveillance of dengue virus-infected Aedes mosquitos. Southeast Asian J Trop Med Public Health 35 : 918–926. [Google Scholar]
  51. Mendez F, Barreto M, Arias JF, Rengifo G, Munoz J, Burbano ME, Parra B, 2006. Human and mosquito infections by dengue viruses during and after epidemics in a dengue-endemic region of Colombia. Am J Trop Med Hyg 74 : 678–683. [Google Scholar]
  52. Pinheiro VCS, Tadei WP, Barros PMSS, Vasconcelos PFC, Cruz ACR, 2005. Detection of dengue virus serotype 3 by reverse transcription-polymerase chain reaction in Aedes aegypti (Diptera, Culicidae) captured in Manaus, Amazonas. Mem Inst Oswaldo Cruz 100 : 833–839. [Google Scholar]
  53. Urdaneta L, Herrera F, Pernalete M, Zoghbi N, Rubio-Palis Y, Barrios R, Rivero J, Comach G, Jimenez M, Salcedo M, 2005. Detection of dengue viruses in field-caught Aedes aegypti (Diptera: Culicidae) in Maracay, Aragua state, Venezuela by type-specific polymerase chain reaction. Infect Genet Evol 5 : 177–184. [Google Scholar]
  54. Manrique-Saide P, Rebollar-Tellez E, Zapata-Peniche A, Che-Medoza A, Dzul-Manzanilla F, 2007. Pupal surveys for Aedes aegypti surveillance and potential targeted control in residential areas of Merida, Mexico. J Am Mosq Control Assoc 23 : 451–452. [Google Scholar]
  55. Winch PJ, Barrientos-Sanchez G, Puigserver-Castro E, Manzano-Cabrera L, Lloyd LS, Mendez-Galvan JF, 1992. Variation in Aedes aegypti larval indices over a one year period in a neighborhood of Merida, Yucatan, Mexico. J Am Mosq Control Assoc 8 : 193–195. [Google Scholar]
  56. Lorono Pino MA, Farfan Ale JA, Rosado Paredes EP, Kuno G, Gubler DJ, 1993. Epidemic dengue 4 in the Yucatan, Mexico, 1984. Rev Inst Med Trop Sao Paulo 35 : 449–455. [Google Scholar]
  57. Seah CLK, Chow VTK, Chan YC, 1995. Semi-nested PCR using NS3 primers for the detection and typing of dengue viruses in clinical serum specimens. Clin Diagn Virol 4 : 113–120. [Google Scholar]
  58. Seah CLK, Chow VTK, Tan HC, Chan YC, 1995. Rapid, single-step RT-PCR typing of dengue viruses using five NS3 gene primers. J Virol Methods 51 : 193–200. [Google Scholar]
  59. Darsie RF Jr, Ward RA, 1981. Identification and geographical distribution of the mosquitoes of North America, north of Mexico. Mosq Syst (Suppl. 1): 1–313. [Google Scholar]
  60. Carpenter SJ, LaCasse WJ, 1955. Mosquitoes of North America (North of Mexico). Berkeley: University of California Press.
  61. Ibañez S, Martínez Campos C, 1994. Aedes albopictus in Mexico. J Am Mosq Control Assoc 10 : 231–232. [Google Scholar]
  62. Sall J, Creighton L, Lehman A, 2005. JMP Start Statistics. Third Edition. Belmont: Brooks/Cole.
  63. Gratz NG, 1999. Emerging and resurging vector-borne diseases. Annu Rev Entomol 44 : 51–75. [Google Scholar]
  64. Gubler DJ, 2002. The global emergence/resurgence of arboviral diseases as public health problems. Arch Med Res 33 : 330–342. [Google Scholar]
  65. Zagaria N, Savioli L, 2002. Elimination of lymphatic filariasis: a public-health challenge. Ann Trop Med Parasitol 96 (Suppl. 2): 3–13. [Google Scholar]
  66. Morrison AC, Zielinski-Gutierrez E, Scott TW, Rosenberg R, 2008. Defining challenges and proposing solutions for control of the virus vector Aedes aegypti. PLoS Med 5 : e68. [Google Scholar]
  67. Gil-Bellorin E, 1991. Relationship between larval indices and adult densities of Aedes aegypti in El Progreso, Honduras, 1989–90. J Am Mosq Control Assoc 7 : 643–645. [Google Scholar]
  68. Siller-Rodriguez Q, Ortega-Morales A, Mercado-Hernandez R, Flores AE, Fernandez-Salas I, 2007. Preferred resting indoor and outdoor places of Aedes aegypti and Culex quinquefasciatus in Monterrey, northeast Mexico. J Am Mosq Control Assoc 23 : 450. [Google Scholar]
  69. Kroeger A, Lenhart A, Ochoa M, Villegas E, Levy M, Alexander N, McCall PJ, 2006. Effective control of dengue vectors with curtains and water container covers treated with insecticide in Mexico and Venezuela: cluster randomised trials. BMJ 332 : 1247–1252. [Google Scholar]
  70. Lenhart A, Orelus N, Maskill R, Alexander N, Streit T, McCall PJ, 2008. Insecticide-treated bednets to control dengue vectors: preliminary evidence from a controlled trial in Haiti. Trop Med Int Health 13 : 56–67. [Google Scholar]
  71. Eisen L, Beaty BJ, 2008. Innovative decision support and vector control approaches to control dengue. Vector-Borne Diseases—Understanding the Environmental, Human Health, & Ecological Connections. Washington, DC: The National Academies Press, 150–161.

Data & Media loading...

  • Received : 09 May 2008
  • Accepted : 10 Sep 2008

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error