Volume 79, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


We characterized genetic profiling markers for using single-strand conformation polymorphism (SSCP) analysis of single copy nuclear genes (scnDNA). Nucleotide variations at 18 loci were evaluated in 173 wild collected from a single population in northwestern Thailand. We identified seven scnDNAs with polymorphisms sufficient to determine a unique genetic profile for each mosquito examined. Six markers were derived from previously mapped cDNA loci. One marker was developed from a non-coding region of a gene. The number of alleles at each scnDNA locus ranged from 3 to 9. The described scnDNAs can be used to quickly fingerprint large numbers of to track the behavior of individual mosquitoes in the field.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Gubler DJ, 1997. Dengue and dengue hemorrhagic fever: its history and resurgence as a global public health problem. Gubler DJ, Kuno G, eds. Dengue and Dengue Hemorrhagic Fever. Wallingford: CAB International, 1–22.
  2. Gubler DJ, 2002. The global emergence/resurgence of arboviral diseases as public health problems. Arch Med Res 33 : 330–342. [Google Scholar]
  3. Scott TW, Takken W, Knols BGJ, Boëte C, 2002. The ecology of genetically modified mosquitoes. Science 298 : 117–119. [Google Scholar]
  4. Reisen WK, 2003. Lessons form the past: an overview of studies by the University of Maryland and the University of California, Berkeley. Takken W, Scott TW, eds. Ecological Aspects for Application of Genetically Modified Mosquitoes. Dordrecht: Kluwer Academic Publishers, 25–32.
  5. Baker RH, Reisen WK, Sakai RH, Hayes CG, Aslamkhan M, Saifuddin UT, Mahmood F, Perveen A, Javed S, 1979. Field assessment of mating competitiveness of male Culex tritaeniorhynchus carrying a complex chromosomal aberration. Ann Entomol Soc Am 72 : 751–758. [Google Scholar]
  6. Baker RH, Reisen WK, Sakai RH, Rathor HR, Raana K, Azra K, Niaz S, 1980. Anopheles culicifacies: mating behavior and competitiveness in nature of males carrying a complex chromosomal aberration. Ann Entomol Soc Am 73 : 581–588. [Google Scholar]
  7. Reisen WK, Baker RH, Sakai RH, Mahmood F, Rathor HR, Koukab R, Toqir C, 1981. Anopheles culicifacies Giles: mating behavior and competitiveness in nature of chemosterilized males carrying a genetic sexing system. Ann Entomol Soc Am 74 : 395–401. [Google Scholar]
  8. McDonald PT, Asman SM, Milby MM, 1978. Outdoor cage tests of genetic strains of Culex tarsalis for future field releases. Proc Calif Mosq Control Assoc 46 : 105–109. [Google Scholar]
  9. Reisen WK, Asman SM, Milby MM, 1981. Attempted suppression of a semi-isolated population of Culex tarsalis by release of irradiated males. Mosq News 4 : 736–744. [Google Scholar]
  10. Ferguson HM, John B, Ng’habi K, Knols BGJ, 2005. Redressing the sex imbalance in knowledge of vector biology. Trends Ecol Evol 20 : 202–209. [Google Scholar]
  11. Apostol BL, Black WC, Reiter P, Miller BR, 1994. Use of randomly amplified polymorphic DNA amplified by polymerase chain reaction markers to estimate the number of Aedes aegypti families at oviposition sites in San Juan, Puerto Rico. Am J Trop Med Hyg 51 : 89–97. [Google Scholar]
  12. Colton YM, Chadee DD, Severson DW, 2003. Natural skip oviposition of the mosquito Aedes aegypti indicated by codominant genetic markers. Med Vet Entomol 17 : 195–204. [Google Scholar]
  13. Black WC, 1993. PCR with arbitrary primers: approach with care. Insect Mol Biol 2 : 1–6. [Google Scholar]
  14. Tripet F, Touré YT, Dolo G, Lanzaro GC, 2003. Frequency of multiple inseminations in field-collected Anopheles gambiae females revealed by DNA analysis of transferred sperm. Am J Trop Med Hyg 68 : 1–5. [Google Scholar]
  15. Huber K, Loan LL, Hoang TH, Ravel S, Rodhain F, Failloux AB, 2002. Genetic differentialtion of the dengue vector, Aedes aegypti (Ho Chi Minh City, Vietnam) using microsatellite markers. Mol Ecol 11 : 1629–1635. [Google Scholar]
  16. Paupy C, Chantha N, Huber K, Lecoz N, Reynes JM, Rodhain F, Failloux AB, 2004. Influence of breeding site features on genetic differentiation of Aedes aegypti populations analyzed on a local scale in Phnom Penh Municipality of Cambodia. Am J Trop Med Hyg 71 : 73–81. [Google Scholar]
  17. Ravel S, Herve JP, Diarrassouba S, Kone A, Cuny G, 2002. Microsatellite markers for population genetic studies in Aedes aegypti (Diptera: Culicidae) from Cote d’Ivoire: evidence for a microgeographic genetic differentiation of mosquitoes from Bouake. Acta Trop 82 : 39–49. [Google Scholar]
  18. Ravel S, Monteny N, Velasco-Olmos D, Escalante-Verdugo J, Cuny G, 2001. A preliminary study of population genetics of Aedes aegypti (Diptera: Culicidae) from Mexico using micro-satellite and AFLP markers. Acta Trop 78 : 241–250. [Google Scholar]
  19. Paupy C, Brengues C, Kamgang B, Hervé JP, Fontenille D, Simard F, 2008. Gene flow between domestic and sylvan populations of Aedes aegypti (Diptera: Culicidae) in North Cameroon. J Med Entomol 45 : 391–400. [Google Scholar]
  20. Fagerberg AJ, Fulton RE, Black WC, 2001. Microsatellite loci are not abundant in all arthropod genomes: analyses in the hard tick, Ixodes scapularis and the yellow fever mosquito, Aedes aegypti. Insect Mol Biol 10 : 225–236. [Google Scholar]
  21. Chambers EW, Meece JK, McGowan JA, Lovin DD, Hemme RR, Chadee DD, McAbee K, Brown SE, Knudson DL, Severson DW, 2007. Microsatellite isolation and linkage group identification in the yellow fever mosquito Aedes aegypti. J Hered 98 : 202–210. [Google Scholar]
  22. Severson DW, Knudson DL, Soares MB, Loftus BJ, 2004. Aedes aegypti genomics. Insect Biochem Mol Biol 34 : 715–721. [Google Scholar]
  23. Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T, 1989. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA 86 : 2766–2770. [Google Scholar]
  24. Antolin MF, Bosio CF, Cotton J, Sweeney W, Strand MR, Black WC, 1996. Intensive linkage mapping in a wasp (Bracon hebetor) and a mosquito (Aedes aegypti) with single-strand conformation polymorphism analysis of random amplified polymorphic DNA markers. Genetics 143 : 1727–1738. [Google Scholar]
  25. Fulton RE, Salasek ML, DuTeau NM, Black WC, 2001. SSCP analysis of cDNA markers provides a dense linkage map of the Aedes aegypti genome. Genetics 158 : 715–726. [Google Scholar]
  26. Harrington LC, Scott TW, Lerdthusnee K, Coleman RC, Costero A, Clark GG, Jones JJ, Kitthawee S, Kittayapong P, Sithiprasasna R, Edman JD, 2005. Dispersal of the dengue vector Aedes aegypti within and between rural communities. Am J Trop Med Hyg 72 : 209–220. [Google Scholar]
  27. Black WC, DuTeau NM, 1997. RAPD-PCR and SSCP analysis for insect population genetic studies. Crampton J, Beard CB, Louis C, eds. The Molecular Biology of Insect Disease Vectors: A Methods Manual. New York: Chapman and Hall, 361–373.
  28. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG, 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24 : 4876–4882. [Google Scholar]
  29. Excoffier L, Laval G, Schneider S, 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolut Bioinform Online 1 : 47–50. [Google Scholar]
  30. Raymond M, Rousset F, 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86 : 248–249. [Google Scholar]
  31. Slotman MA, Kelly NB, Harrington LC, Kitthawee S, Jones JW, Scott TW, Caccone A, Powell JR, 2007. Polymorphic micro-satellite markers for studies of Aedes aegypti (Diptera: Culicidae), the vector of dengue and yellow fever. Mol Ecol Notes 7 : 168–171. [Google Scholar]
  32. Urdaneta-Marquez L, Bosio C, Herrera F, Rubio-Palis Y, Salasek M, Black WC, 2008. Genetic relationships among Aedes aegypti collections in Venezuela as determined by mitochondrial DNA variation and nuclear single nucleotide polymorphisms. Am J Trop Med Hyg 78 : 479–491. [Google Scholar]
  33. Saavedra-Rodriguez KL, Flores-Suarez AE, Fernandez-Salas L, Black WC, 2007. QTL mapping of genes controlling permethrin resistance in Aedes aegypti. Am J Trop Med Hyg 77 (Suppl 5): 178–179. [Google Scholar]
  34. Morlais I, Severson DW, 2003. Intraspecific DNA variation in nuclear genes of the mosquito Aedes aegypti. Insect Mol Biol 12 : 631–639. [Google Scholar]
  35. Moriyama EN, Powell JR, 1996. Intraspecific nuclear DNA variation in Drosophila. Mol Biol Evol 13 : 261–277. [Google Scholar]
  36. Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JMC, Wides R, Salzberg SL, Loftus B, Yandell M, Majoros WH, Rusch DB, Lai ZW, Kraft CL, Abril JF, Anthouard V, Arensburger P, Atkinson PW, Baden H, de Berardinis V, Baldwin D, Benes V, Biedler J, Blass C, Bolanos R, Boscus D, Barnstead M, Cai S, Center A, Chatuverdi K, Christophides GK, Chrystal MA, Clamp M, Cravchik A, Curwen V, Dana A, Delcher A, Dew I, Evans CA, Flanigan M, Grundschober-Freimoser A, Friedli L, Gu ZP, Guan P, Guigo R, Hillenmeyer ME, Hladun SL, Hogan JR, Hong YS, Hoover J, Jaillon O, Ke ZX, Kodira C, Kokoza E, Koutsos A, Letunic I, Levitsky A, Liang Y, Lin JJ, Lobo NF, Lopez JR, Malek JA, McIntosh TC, Meister S, Miller J, Mobarry C, Mongin E, Murphy SD, O’Brochta DA, Pfannkoch C, Qi R, Regier MA, Remington K, Shao HG, Sharakhova MV, Sitter CD, Shetty J, Smith TJ, Strong R, Sun JT, Thomasova D, Ton LQ, Topalis P, Tu ZJ, Unger MF, Walenz B, Wang AH, Wang J, Wang M, Wang XL, Woodford KJ, Wortman JR, Wu M, Yao A, Zdobnov EM, Zhang HY, Zhao Q, Zhao SY, Zhu SPC, Zhimulev I, Coluzzi M, della Torre A, Roth CW, Louis C, Kalush F, Mural RJ, Myers EW, Adams MD, Smith HO, Broder S, Gardner MJ, Fraser CM, Birney E, Bork P, Brey PT, Venter JC, Weissenbach J, Kafatos FC, Collins FH, Hoffman SL, 2002. The genome sequence of the malaria mosquito Anopheles gambiae. Science 298 : 129–149. [Google Scholar]
  37. Nene V, Wortman JR, Lawson D, Haas B, Kodira C, Tu Z, Loftus B, Xi Z, Megy K, Grabherr M, Ren Q, Zdobnov EM, Lobo NF, Campbell KS, Brown SE, Bonaldo MF, Zhu J, Sinkins SP, Hogenkamp DG, Amedeo P, Arensburger P, Atkinson PW, Bidwell S, Biedler J, Birney E, Bruggner RV, Costas J, Coy MR, Crabtree J, Crawford M, deBruyn B, De-Caprio D, Eiglmeier K, Eisenstadt E, El-Dorry H, Gelbart WM, Gomes SL, Hammond M, Hannick LI, Hogan JR, Holmes MH, Jaffe D, Johnston JS, Kennedy RC, Koo H, Kravitz S, Kriventseva EV, Kulp D, LaButti K, Lee E, Li S, Lovin DD, Mao C, Mauceli E, Menck CFM, Miller JR, Montgomery P, Mori A, Nascimento AL, Naveira HF, Nusbaum C, O’Leary S, Orvis J, Pertea M, Quesneville H, Reidenbach KR, Rogers YH, Roth CW, Schneider JR, Schatz M, Shumway M, Stanke M, Stinson EO, Tubio JMC, VanZee JP, Verjovski-Almeida S, Werner D, White O, Wyder S, Zeng Q, Zhao Q, Zhao Y, Hill CA, Raikhel AS, Soares MB, Knudson DL, Lee NH, Galagan J, Salzberg SL, Paulsen IT, Dimopoulos G, Collins FH, Birren B, Fraser-Liggett CM, Severson DW, 2007. Genome sequence of Aedes aegypti, a major arbovirus vector. Science 316 : 1718–1723. [Google Scholar]

Data & Media loading...

  • Received : 18 Oct 2007
  • Accepted : 20 Jun 2008

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error