Volume 79, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Envenomation by species (brown spider) can lead to local dermonecrosis and to serious systemic effects. The main toxic component in the venom of these spiders is sphingomyelinase D (SMase D) and various isoforms of this toxin are present in venoms. We have produced a new anti-loxoscelic serum by immunizing horses with recombinant SMase D. In the present study, we compared the neutralization efficacy of the new anti-loxoscelic serum and anti-arachnidic serum (the latter serum is used for therapy for loxoscelism in Brazil) against the toxic effects of venoms from spiders of the genus . Neutralization tests showed that anti-SMase D serum has a higher activity against toxic effects of and venoms and similar or slightly weaker activity against toxic effects of than that of Arachnidic serum. These results demonstrate that recombinant SMase D can replace venom for anti-venom production and therapy.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Futrell JM, 1992. Loxoscelism. Am J Med Sci 304 : 261–267. [Google Scholar]
  2. Ginsburg CM, Weinberg AG, 1988. Hemolytic anemia and multiorgan failure associated with localized cutaneous lesion. J Pediatr 112 : 496–499. [Google Scholar]
  3. Gendron BP, 1990. Loxosceles reclusa envenomation. Am J Emerg Med 8 : 51–54. [Google Scholar]
  4. Bey TA, Walter FG, Lober W, Schmidt J, Spark R, Schlievert PM, 1997. Loxosceles arizonica bite associated with shock. Ann Emerg Med 30 : 701–703. [Google Scholar]
  5. Ramos-Cerrillo B, Olvera A, Odell GV, Zamudio F, Paniagua-Solis J, Alagon A, Stock RP, 2004. Genetic and enzymatic characterization of sphingomyelinase D isoforms from the North American fidleback spiders Loxosceles boneti and Loxosceles recluse. Toxicon 44 : 507–514. [Google Scholar]
  6. Newlands G, Isaacson C, Martindale C, 1982. Loxoscelism in the Transvaal, South Africa. Trans R Soc Trop Med Hyg 76 : 610–615. [Google Scholar]
  7. Denny WF, Dillaha CJ, Morgan PN, 1964. Hemotoxic effect of Loxoscels reclusa venom: in vivo and in vitro studies. J Lab Clin Med 64 : 291. [Google Scholar]
  8. Schenone H, Saavedra T, Rojas A, Villarroel F, 1998. Loxoscelism in Chile. Epidemiologic, clinical and experimental studies. Rev Inst Med Trop Sao Paulo 31 : 403–415. [Google Scholar]
  9. Dillaha CJ, Jansen T, Honeycut WM, Hayden CR, 1964. North America Loxoscelism. JAMA 188 : 33–36. [Google Scholar]
  10. Rees RS, Shack B, Withers F, Madden J, Franklin J, Lynch JB, 1981. Management of the brown recluse spider bite. Plast Reconstr Surg 68 : 768–773. [Google Scholar]
  11. Koh WL, 1998. When to worry about spiders bite: inaccurate diagnosis can have serious, even fatal, consequences. Postgrad Med 103 : 235–250. [Google Scholar]
  12. Allen C, 1992. Arachnid envenomation. Emerg Med Clin North Am 10 : 269–299. [Google Scholar]
  13. Anderson PC, 1997. Spider bites in the United States. Dermathol Clin 5 : 307–311. [Google Scholar]
  14. Walter FG, Bilden EF, Gibly RL, 1999. Envenomations. Crit Care Clin 15 : 627–629. [Google Scholar]
  15. Barrett SM, Romine-Jenkins M, Fisher DE, 1994. Dapsone or electric shock treatment of brown recluse spider envenomation. Ann Emerg Med 24 : 21–25. [Google Scholar]
  16. Bitterman-Deutsch O, Bergman R, Friedman-Birnbaum R, 1990. Brown spider bite. Harefuah 119 : 137–139. [Google Scholar]
  17. Wille RC, Morrow JD, 1998. Case report: dapsone hypersensitivity syndrome associated with treatment of the bite of brown spider. Am J Med Sci 296 : 270–271. [Google Scholar]
  18. Mold JW, Thompson DM, 2004. Management of brown recluse spider bites in primary care. J Am Board Fam Pract 1 : 347–352. [Google Scholar]
  19. Bryant SM, Pittman LM, 2003. Dapsone use in Loxosceles reclusa enevenomation: is there an indication? Am J Emerg Med 21 : 89–90. [Google Scholar]
  20. Elston MD, Miller MS, Young RJ III, Eggers J, McGlasson D, Schmidt WH, Brush A, 2005. Comparation of colchicines, dapsone, triamcinolone and diphenhydramine therapy for the treatment of brown recluse spider envenomation. Arch Dermatol 141 : 595–597. [Google Scholar]
  21. Smith CW, Micks DW, 1970. The role of polymorphonuclear leukocytes in the lesion caused by the venom of the brown spider, Loxosceles reclusa. Lab Invest 22 : 141–144. [Google Scholar]
  22. Wilson JR, Hagood CO, Jr Prather ID, 2005. Brown recluse spider bites: a complex problem wound. A brief review and case study. Ostomy Wound Manage 51 : 59–66. [Google Scholar]
  23. Pizzi T, 1957. A histopathological study on necrotic arachnidism by Loxosceles laeta. Bol Chil Parasitol 30 : 34–36. [Google Scholar]
  24. Sunderkotter C, Seeliger S, Schonlau F, Roth J, Hallmann R, Luger TA, Sorg C, Kolde G, 2001. Different pathway leading to cutaneous leukocytoclastic vasculitis in mice. Exp Dermatol 10 : 391–404. [Google Scholar]
  25. Tambourgi DV, Paixão-Cavalcante D, Gonçalves-de-Andrade RM, Fernandes-Pedrosa MF, Magnoli FC, Morgan PB, van den Berg CW, 2005. Loxosceles sphingomyelinase induces complement-dependent dermonecrosis, neutrophil infiltration, and endogenous gelatinase expression. J Invest Dermatol 124 : 725–731. [Google Scholar]
  26. Ministry of Health, 1998. Manual de Diagnóstico e Tratamento de Acidentes por Animais Peçonhento. Fundação Nacional de Saúde/Coordenação de Controle de Zoonoses e Animais Peçonhentos. Brasília: Centro Neurop.
  27. Kurpiewski G, Forrester LJ, Barret JT, Campbell BJ, 1981. Platelet aggregation and sphingomyelinase D activity of a purified toxin from the venom of Loxosceles recluse. Biochim Biophys Acta 678 : 467–476. [Google Scholar]
  28. Tambourgi DV, Magnoli FC, van den Berg CW, Morgan BP, de Araujo PS, Alves EW, Dias da Silva WD, 1998. Sphingomyelinases in the venom of the spider Loxosceles intermedia are responsible for both dermonecrosis and complement-dependent hemolysis. Biochem Biophys Res Commun 251 : 366–373. [Google Scholar]
  29. Tambourgi DV, Petricevich VL, Magnoli FC, Assaf SL, Jancar S, Dias da Silva W, 1998b. Endotoxemic-like shock induced by Loxosceles spider venoms, pathological changes and putative cytokine mediators. Toxicon 3 : 391–403. [Google Scholar]
  30. Tambourgi DV, Morgan BP, Gonçalves-de-Andrade RM, Magnoli FC, van den Berg CW, 2000. Loxosceles intermedia spider envenomation induces activation of an endogenous metallo-proteinase, resulting in cleavage of glycophorins from the erythrocyte surface and facilitating complement-mediated lysis. Blood 95 : 683–691. [Google Scholar]
  31. Tambourgi DV, de Sousa da Silva M, Billington SJ, Goncalves-de-Andrade RM, Magnoli FC, Songer JG, van den Berg CW, 2002. Mechanism of induction of complement susceptibility of erythrocytes by spider and bacterial sphingomyelinases. Immunol 107 : 93–101. [Google Scholar]
  32. Tambourgi DV, Fernandes-Pedrosa MF, van den Berg CW, Gonçalves-de-Andrade RM, Ferracini M, Paixão-Cavalcante D, Morgan BP, Rushmere NK, 2004. Molecular cloning, expression, function and immunoreactivities of members of a gene family of sphingomyelinases from Loxosceles venom glands. Mol Immunol 41 : 831–840. [Google Scholar]
  33. Paixão-Cavalcante D, van den Berg CW, Fernandes-Pedrosa MF, Gonçalves-de-Andrade RM, Tambourgi DV, 2006. Role of matrix metalloproteinases in HaCaT keratinocytes apoptosis induced by Loxosceles venom sphingomyelinase D. J Invest Dermatol 126 : 61–68. [Google Scholar]
  34. van den Berg CW, Gonçalves-de-Andrade RM, Magnoli FC, Marchbank KJ, Tambourgi DV, 2002. Loxosceles spider venom induces metalloproteinases mediated cleavage of MCP/CD46 and MHC I and induces protection against C-mediated lysis. Immunology 107 : 102–110. [Google Scholar]
  35. Fernandes-Pedrosa MF, Junqueira de Azevedo IL, Gonçalves-de-Andrade RM, van den Berg CW, Ramos CR, Ho PL, Tam-bourgi DV, 2002. Molecular cloning and expression of a functional dermonecrotic and haemolytic factor from Loxosceles laeta venom. Biochem Biophys Res Commun 298 : 638–645. [Google Scholar]
  36. Bucherl W, 1969. Biology and venoms of the most important South American spiders of the genera Phoneutria, Loxosceles, Lycosa, and Latrodectus. Am Zool 9 : 157–159. [Google Scholar]
  37. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC, 1985. Measurement of protein using bicinchronic acid. Anal Biochem 150 : 76–85. [Google Scholar]
  38. Laemmli UK, 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227 : 680–685. [Google Scholar]
  39. Towbin H, Staehelin TJ, Gordon J, 1979. Eletrophoretic transfer of proteins from acrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad USA 76 : 4350–4354. [Google Scholar]
  40. Furlanetto RS, Santos NP, Navas J, 1962. Preparação, purificação e doseamento do sôro antiloxoscélico. Cienc Cult 14 : 254. [Google Scholar]
  41. Tokomura A, Majima E, Kariya Y, Tominagua K, Kogune K, Ogune K, Yasuda K, Fukuzawa K, 2002. Increased production of bioactive lysophosphatidic acid by serum lysophospholipase D in human pregnancy. J Biol Chem 277 : 39436–39442. [Google Scholar]
  42. Klinman NR, Rockey JH, Karush F, 1965. Equine antihapten antibody II. The gamma-G (7S-gamma) components and their specific interaction. Int J Cancer Suppl 47 : 51–60. [Google Scholar]
  43. Tambourgi DV, Magnoli FC, von Eicksted VRD, Benedetti ZC, Petrecevich VL, Dias da Silva W, 1995. Incorporation of a 35 kDa purified protein from Loxosceles intermedia spider venom transforms human erythrocytes into activators of autologous complement alternative pathway. J Immunol 155 : 4459–4466. [Google Scholar]
  44. Tambourgi DV, Pedrosa MF, de Andrade RM, Billington SJ, Griffiths M, van den Berg CW, 2007. Sphingomyelinases D induce direct association of C1q to the erythrocyte membrane causing complement mediated autologous haemolysis. Mol Immunol 44 : 576–582. [Google Scholar]
  45. Gutierrez JM, Leon G, Lomonte B, 2003. Pharmacokinetic–pharmacodynamic relationships of immunoglobulin therapy for envenomation. Clin Pharmacokinet 42 : 721–741. [Google Scholar]
  46. Scherrmann JM, 1994. Antibody treatment of toxin poisoning: recent advances. J Toxicol Clin Toxicol 32 : 363–375. [Google Scholar]
  47. Fernandes I, Mota I, 1991. Isolation of IgGT from hiperimmune horse anti-snake venom serum: its protective ability. Toxicon 29 : 1373–1379. [Google Scholar]
  48. Fernandes I, Takehara HA, Santos AC, Cormont F, Latinne D, Bazin H, Mota I, 1996. Neutralization of bothropic and crotalic venom toxic activities by IgG(T) and IgGa subclasses isolated from the immune horse serum. Toxicon 35 : 931–936. [Google Scholar]
  49. Saetang T, Treamwattana N, Suttijitpaisal P, Ratanabanangkoon K, 1997. Quantitative comparison on the refinement of horse antivenom by salt fractionation and ion-exchange chromatography. J Chromatogr B 700 : 233–239. [Google Scholar]
  50. Toro AF, Malta MB, Soares SL, da Rocha GC, da Silva Lira M, De Oliveira TA, Takehara HA, Lopes-Ferreira M, Santoro ML, Guidolin R, Gondo HH, Fernandes I, Bárbaro KC, 2006. Role of IgG(T) and IgGa isotypes obtained from arachnidic antivenom to neutralize toxic activities of Loxosceles gaucho, Phoneutria nigriventer and Tityus serrulatus venoms. Toxicon 48 : 649–661. [Google Scholar]
  51. Fernandes-Pedrosa MF, Junqueira-de-Azevedo IL, Gonçalves-de-Andrade RM, Kobashi LS, Almeida DD, Ho PL, Tam-bourgi DV, 2008. Transcriptome analysis of Loxosceles laeta (Araneae, Sicariidae) spider venomous gland using expressed sequence tags. BMC Genomics 9 : 279. [Google Scholar]

Data & Media loading...

  • Received : 03 Jun 2008
  • Accepted : 11 Jun 2008

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error