Volume 79, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Oxidative stress in dengue infection has been suggested. This study was carried out to explore the plasma protein oxidation and its sialic acid content in dengue infection. Thirty-two dengue hemorrhagic fever (DHF), 25 dengue shock syndrome (DSS), 29 dengue fever (DF), and 63 healthy controls were included in this study. The extent of carbonylation, sulphydryl content, and desialylation of plasma protein was estimated in acute phase sample. Significantly higher levels of protein carbonyls and lower levels of sialic acid and sulphydryl groups were found in DHF and DSS compared with DF using one-way analysis of variance. Regression analysis showed that desialylation is dependent on protein carbonyls in DHF/DSS. This study indicates that, in dengue infection, plasma proteins undergo increased levels of desialylation, which can be attributed to the oxidative stress. Future studies on sialylation status of endothelium and platelets can show light into the pathogenesis of the dengue infection.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Gubler DJ, 1998. Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 11 : 480–496. [Google Scholar]
  2. Gibbons RV, Vaughn DW, 2002. Dengue: an escalating problem. BMJ 324 : 1563–1566. [Google Scholar]
  3. Taniuchi K, Chifu K, Hayashi N, Nakamachi Y, Yamaguchi N, Miyamato Y, 1981. A new enzymatic method for the determination of sialic acid and its application as a marker of acute phase reactants. Kobe J Med Sci 27 : 91–102. [Google Scholar]
  4. Petren S, 1989. Vesterberg 0. The N-acetylneuraminic acid content of five forms of human transferrin. Biochim Biophys Acta 994 : 161–165. [Google Scholar]
  5. Nurden AT, George JN, Philips DR, 1986. Platelet membrane glycoproteins: their structure, function, and modification in disease. Philips DR, Shuman MA, eds. Biochemistry of Platelets. Orlando, FL: Academic Press, 160–212.
  6. Thornhill WB, Wu MB, Jiang X, Wu X, Morgan PT, Margiotta JF, 1996. Expression of Kv1.1 delayed rectifier potassium channels in Lec mutant Chinese hamster ovary cell lines reveals a role for sialidation in channel function. J Biol Chem 271 : 19093–19098. [Google Scholar]
  7. Murray RK, 1996. Glycoproteins. Murray RK, Granner DK, Mayes PA, Rodwell VW, eds. Harper’s Biochemistry. 24th edition. NJ: Prentice Hall, 651.
  8. Goswami K, Nandakumar DN, Koner BC, Bobby Z, Sen SK, 2003. Oxidative changes and desialylation of serum proteins in hyperthyroidism. Clin Chim Acta 337 : 163–168. [Google Scholar]
  9. Halstead SB, 1988. Pathogenesis of dengue. Challenges to molecular biology. Science 239 : 476–481. [Google Scholar]
  10. Kurane I, Takasaki T, 2001. Dengue fever and dengue haemorrhagic fever: challenges of controlling an enemy still at large. Rev Med Virol 11 : 301–311. [Google Scholar]
  11. Chatuverdi UC, Agarwal R, Elbishbishi EA, Mustafa AS, 2000. Cytokine cascade in dengue hemorrhagic fever: implications for pathogenesis. FEMS Immunol Med Microbiol 28 : 183–188. [Google Scholar]
  12. Mongkolsapaya J, Dejnirattisai W, Xu X, Vasanawathana S, Tangthawornchaikul N, Chairunsri A, Sawasdivorn S, Duangchinda T, Dong T, Rowland-Jones S, Yenchitsomanus P, McMichael A, Malasit P, Screaton G, 2003. Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. Nat Med 9 : 921–927. [Google Scholar]
  13. Gil L, Martinez G, Tapanes R, Castro O, González D, Bernardo L, Vázquez S, Kourí G, Guzman M, 2004. Oxidative stress in adult dengue patients. Am J Trop Med Hyg 71 : 652–657. [Google Scholar]
  14. Peterhans E, Grob M, Burge T, Zanoni R, 1987. Virus-induced formation of reactive oxygen intermediates in phagocytic cells. Free Radic Res Commun 3 : 39–46. [Google Scholar]
  15. Sahnoun Z, Jamoussi K, Zeghal KM, 1997. Free radicals and antioxidants: human physiology, pathology and therapeutics aspects. Therapie 52 : 251–270. [Google Scholar]
  16. Yoshikawa T, 1996. Vascular dysfunction and free radicals. Free Radic Biol Med 2002; 33 : 425–426. [Google Scholar]
  17. Winter ML, Liehr JG, 1991. Free radical-induced carbonyl content in protein of estrogen-treated hamsters assayed by sodium boro [3H] hydride reduction. J Biol Chem 266 : 14446–14450. [Google Scholar]
  18. Wolff SP, Dean R, 1986. Fragmentation of protein by free radicals and its effect on their susceptibility to enzymic hydrolysis. Biochem J 234 : 399–403. [Google Scholar]
  19. Pantke U, Volk T, Schmutzler M, Kox WJ, Sitte N, Grune T, 1999. Oxidized proteins as a marker of oxidative stress during coronary heart surgery. Free Radic Biol Med 27 : 1080–1086. [Google Scholar]
  20. Wayner DDM, Burton GW, Ingold KU, Barclay LRC, Locke SJ, 1987. The relative contributions of vitamin E, urate, ascorbate, and proteins to the total peroxyl radical trapping antioxidant activity of human plasma. Biochim Biophys Acta 924 : 408–419. [Google Scholar]
  21. Hoti SL, Soundravally R, Rajendran G, Das LK, Ravi R, Das PK, 2006. Dengue and dengue haemorrhagic fever outbreaks in Pondicherry, South India, during 2003–2004: emergence of DENV-3. Dengue Bull 30 : 42–50. [Google Scholar]
  22. World Health Organization, 1997. Dengue Haemorrhagic Fever: Diagnosis, Treatment, Prevention, and Control. Second edition. Geneva: World Health Organization.
  23. Lanciotti RS, Calisher CH, Gubler DJ, Chang G-J, Vorndam V, 1992. Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction. J Clin Microbiol 30 : 545–551. [Google Scholar]
  24. Aminoff D, 1961. Methods for the quantitative estimation of N-acetylneuraminic acid and their application to hydrolysates of sialomucoids. Biochem J 81 : 384–392. [Google Scholar]
  25. Levine RL, Williams JA, Stadtman BR, Shacter E, 1994. Carbonyl assays for determination of oxidatively modified protein. Enzymology 233 : 346–357. [Google Scholar]
  26. Sedlak J, Lindsay RH, 1968. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25 : 192–205. [Google Scholar]
  27. Lindberg G, Eklund GA, Gullberg B, Rastam L, 1991. Serum sialic acid concentration and cardiovascular mortality. BMJ 302 : 143–146. [Google Scholar]
  28. Taniuchi K, Chifu K, Hayashi N, Nakamachi Y, Yamaguchi N, Miyamoto Y, Doi K, Baba S, Uchida Y, Tsukada Y, Sugimori T, 1981. A new enzymatic method for the determination of sialic acid in serum and its application for a marker of acute phase reactants. Kobe J Med Sci 27 : 91–102. [Google Scholar]
  29. Pickup JC, Mattock MB, Chusney GD, Burt D, 1997. NIDDM as a disease of the innate immune system: association of acute phase reactants and interleukin-6 with metabolic syndrome X. Diabetologia 40 : 1286–1292. [Google Scholar]
  30. Kushner I, 1993. Regulation of the acute phase response by cytokines. Perspect Biol Med 36 : 611–622. [Google Scholar]
  31. Baumann H, Gauldie J, 1994. The acute phase response. Immunol Today 15 : 74–80. [Google Scholar]
  32. Juffrie M, Meer GM, Hack CE, Haasnoot K, Sutaryo X, Veerman AJ, Thijs LG, 2001. Inflammatory mediators in dengue virus infection in children: interleukin-6 and its relation to C-reactive protein and secretory phospholipase A2. Am J Trop Med Hyg 65 : 70–75. [Google Scholar]
  33. Halliwell B, Gutteridge JM, 1990. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186 : 1–85. [Google Scholar]
  34. Klassen P, Hans KB, Mazariegos M, Noel WS, Furst P, 2004. Classic dengue fever affects levels of circulating antioxidants. Nutrition 20 : 542–547. [Google Scholar]
  35. Goswami K, Koner BC, 2002. Level of sialic acid residues in Platelet proteins in diabetes, aging, and Hodgkin’s lymphoma: a potential role of free radicals in desialylation. Biochem Biophys Res Commun 297 : 502–505. [Google Scholar]
  36. Tanaka K, Tokumaru S, Kojo S, 1997. Possible involvement of radical reactions in desialylation of LDL. FEBS Lett 413 : 202–204. [Google Scholar]
  37. Bratosin D, Mazurier J, Tissier JP, Estaquier J, Huart JJ, Ameisen JC, Aminoff D, Montreuil J, 1998. Cellular and molecular mechanisms of senescent erythrocyte phagocytosis by macrophages. A review. Biochemie 80 : 173–195. [Google Scholar]
  38. Rothman AL, Ennis FA, 2000. Toga/flaviviruses: immunopathology. Cunningham MW, Fujinami RS, eds. Effects of Microbes on the Immune System. Philadelphia: Lippincott Williams and Wilkins, 473–490.
  39. Anderson R, Wang S, Osiowy C, Issekutz AC, 1997. Activation of endothelial cells via antibody-enhanced dengue virus infection of peripheral blood monocytes. J Virol 71 : 4226–4232. [Google Scholar]
  40. Granger DN, Rutili G, McCord J, 1981. Superoxide radicals in feline intestinal ischemia. Gastroenterology 81 : 22–29. [Google Scholar]
  41. Irani K, 2000. Oxidant signaling in vascular cell growth, death, and survival. Circ Res 87 : 179–183. [Google Scholar]
  42. Osu K, Inoves U, 2003. Correlation of increased platelet associated IgG and thrombocytopenia in dengue fever. J Med Virol 71 : 259–264. [Google Scholar]
  43. Schexneider KJ, Reedy EA, 2005. Thrombocytopenia in dengue fever. Current Hematol Resp 4 : 145–148. [Google Scholar]
  44. Erela O, Vurala H, Aksoya N, Aslanb G, Ulukan M, 2001. Oxidative stress of platelets and thrombocytopenia in patients with vivax malaria. Clin Biochem 34 : 341–344. [Google Scholar]

Data & Media loading...

  • Received : 29 Dec 2007
  • Accepted : 13 May 2008

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error