1921
Volume 79, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Studying drug resistance in requires accurate measurement of parasite response to a drug. Factors such as mixed infection of drug-resistant and -sensitive parasites can influence drug test outcome. Polymorphic DNA sequences are frequently used to detect mixed infections; infections with a single genotype or having a minor allele smaller than a subjectively selected cut-off value are often considered single infection. We studied the effects of mixed parasite populations containing various ratios of parasites resistant and sensitive to chloroquine on outcomes of drug tests and how ratios of parasite mixtures correlated with genotypes using polymerase chain reaction–based methods. Our results show that a mixture with a resistant population as low as 10% could greatly impact a drug test outcome. None of the genotyping methods could reliably detect minor DNA alleles at ≤ 10%. Mixed infection presents a serious problem for drug tests, and genotyping using microsatellite or other methods may not reliably reflect true ratios of alleles.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.2008.79.178
2008-08-01
2018-12-15
Loading full text...

Full text loading...

/deliver/fulltext/14761645/79/2/0790178.html?itemId=/content/journals/10.4269/ajtmh.2008.79.178&mimeType=html&fmt=ahah

References

  1. Yeung S, Pongtavornpinyo W, Hastings IM, Mills AJ, White NJ, 2004. Antimalarial drug resistance, artemisinin-based combination therapy, and the contribution of modeling to elucidating policy choices. Am J Trop Med Hyg 71 : 179–186. [Google Scholar]
  2. Rieckmann KH, Campbell GH, Sax LJ, Mrema JE, 1978. Drug sensitivity of Plasmodium falciparum. An in-vitro microtechnique. Lancet 1 : 22–23. [Google Scholar]
  3. Desjardins RE, Canfield CJ, Haynes JD, Chulay JD, 1979. Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother 16 : 710–718. [Google Scholar]
  4. Makler MT, Ries JM, Williams JA, Bancroft JE, Piper RC, Gibbins BL, Hinrichs DJ, 1993. Parasite lactate dehydrogenase as an assay for Plasmodium falciparum drug sensitivity. Am J Trop Med Hyg 48 : 739–741. [Google Scholar]
  5. Noedl H, Wernsdorfer WH, Miller RS, Wongsrichanalai C, 2002. Histidine-rich protein II: a novel approach to malaria drug sensitivity testing. Antimicrob Agents Chemother 46 : 1658–1664. [Google Scholar]
  6. Noedl H, Bronnert J, Yingyuen K, Attlmayr B, Kollaritsch H, Fukuda M, 2005. Simple histidine-rich protein 2 double-site sandwich enzyme-linked immunosorbent assay for use in malaria drug sensitivity testing. Antimicrob Agents Chemother 49 : 3575–3577. [Google Scholar]
  7. Druilhe P, Moreno A, Blanc C, Brasseur PH, Jacquier P, 2001. A colorimetric in vitro drug sensitivity assay for Plasmodium falciparum based on a highly sensitive double-site lactate dehydrogenase antigen-capture enzyme-linked immunosorbent assay. Am J Trop Med Hyg 64 : 233–241. [Google Scholar]
  8. Bennett TN, Paguio M, Gligorijevic B, Seudieu C, Kosar AD, Davidson E, Roepe PD, 2004. Novel, rapid, and inexpensive cell-based quantification of antimalarial drug efficacy. Antimicrob Agents Chemother 48 : 1807–1810. [Google Scholar]
  9. Smilkstein M, Sriwilaijaroen N, Kelly JX, Wilairat P, Riscoe M, 2004. Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrob Agents Chemother 48 : 1803–1806. [Google Scholar]
  10. Bacon DJ, Latour C, Lucas C, Colina O, Ringwald P, Picot S, 2007. Comparison of a SYBR Green I based assay with an HRPII ELISA method for in vitro antimalarial drug efficacy testing and application to clinical isolates. Antimicrob Agents Chemother 51 : 1172–1178. [Google Scholar]
  11. Baniecki ML, Wirth DF, Clardy J, 2007. High-throughput Plasmodium falciparum growth assay for malaria drug discovery. Antimicrob Agents Chemother 51 : 716–723. [Google Scholar]
  12. Johnson JD, Dennull RA, Gerena L, Lopez-Sanchez M, Roncal NE, Waters NC, 2007. Assessment and continued validation of the malaria SYBR green I-based fluorescence assay for use in malaria drug screening. Antimicrob Agents Chemother 51 : 1926–1933. [Google Scholar]
  13. Wellems TE, Panton LJ, Gluzman IY, do Rosario VE, Gwadz RW, Walker-Jonah A, Krogstad DJ, 1990. Chloroquine resistance not linked to mdr-like genes in a Plasmodium falciparum cross. Nature 345 : 253–255. [Google Scholar]
  14. Wongsrichanalai C, Lin K, Pang LW, Faiz MA, Noedl H, Wimonwattrawatee T, Laoboonchai A, Kawamoto F, 2001. In vitro susceptibility of Plasmodium falciparum isolates from Myanmar to antimalarial drugs. Am J Trop Med Hyg 65 : 450–455. [Google Scholar]
  15. Noedl H, Wongsrichanalai C, Wernsdorfer WH, 2003. Malaria drug-sensitivity testing: new assays, new perspectives. Trends Parasitol 19 : 175–181. [Google Scholar]
  16. Ferdig MT, Cooper RA, Mu J, Deng B, Joy DA, Su X-z, Wellems TE, 2004. Dissecting the loci of low-level quinine resistance in malaria parasites. Mol Microbiol 52 : 985–997. [Google Scholar]
  17. Cooper RA, Lane KD, Deng B, Mu J, Patel JJ, Wellems TE, Su X-z, Ferdig MT, 2007. Mutations in transmembrane domains 1, 4 and 9 of the Plasmodium falciparum chloroquine resistance transporter alter susceptibility to chloroquine, quinine and quinidine. Mol Microbiol 63 : 270–282. [Google Scholar]
  18. Anderson TJ, Haubold B, Williams JT, Estrada-Franco Section Sign JG, Richardson L, Mollinedo R, Bockarie M, Mokili J, Mharakurwa S, French N, Whitworth J, Velez ID, Brockman AH, Nosten F, Ferreira MU, Day KP, 2000. Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. Mol Biol Evol 17 : 1467–1482. [Google Scholar]
  19. Bendixen M, Msangeni HA, Pedersen BV, Shayo D, Bodker R, 2001. Diversity of Plasmodium falciparum populations and complexity of infections in relation to transmission intensity and host age: a study from the Usambara Mountains, Tanzania. Trans R Soc Trop Med Hyg 95 : 143–148. [Google Scholar]
  20. Kobbe R, Neuhoff R, Marks F, Adjei S, Langefeld I, von Reden C, Adjei O, Meyer CG, May J, 2006. Seasonal variation and high multiplicity of first Plasmodium falciparum infections in children from a holoendemic area in Ghana, West Africa. Trop Med Int Health 11 : 613–619. [Google Scholar]
  21. Lee SA, Yeka A, Nsobya SL, Dokomajilar C, Rosenthal PJ, Talisuna A, Dorsey G, 2006. Complexity of Plasmodium falciparum infections and antimalarial drug efficacy at 7 sites in Uganda. J Infect Dis 193 : 1160–1163. [Google Scholar]
  22. Viriyakosol S, Siripoon N, Petcharapirat C, Petcharapirat P, Jarra W, Thaithong S, Brown KN, Snounou G, 1995. Genotyping of Plasmodium falciparum isolates by the polymerase chain reaction and potential uses in epidemiological studies. Bull World Health Organ 73 : 85–95. [Google Scholar]
  23. Babiker H, Ranford-Cartwright L, Sultan A, Satti G, Walliker D, 1994. Genetic evidence that RI chloroquine resistance of Plasmodium falciparum is caused by recrudescence of resistant parasites. Trans R Soc Trop Med Hyg 88 : 328–331. [Google Scholar]
  24. Ferdig MT, Su X-z, 2000. Microsatellite markers and genetic mapping in Plasmodium falciparum. Parasitol Today 16 : 307–312. [Google Scholar]
  25. Anderson TJ, Nair S, Qin H, Singlam S, Brockman A, Paiphun L, Nosten F, 2005. Are transporter genes other than the chloroquine resistance locus (pfcrt) and multidrug resistance gene (pfmdr) associated with antimalarial drug resistance? Antimicrob Agents Chemother 49 : 2180–2188. [Google Scholar]
  26. Nair S, Nash D, Sudimack D, Jaidee A, Barends M, Uhlemann AC, Krishna S, Nosten F, Anderson TJ, 2007. Recurrent gene amplification and soft selective sweeps during evolution of multidrug resistance in malaria parasites. Mol Biol Evol 24 : 562–573. [Google Scholar]
  27. Dolan SA, Herrfeldt JA, Wellems TE, 1993. Restriction polymorphisms and fingerprint patterns from an interspersed repetitive element of Plasmodium falciparum DNA. Mol Biochem Parasitol 61 : 137–142. [Google Scholar]
  28. Trager W, Jensen JB, 1976. Human malaria parasites in continuous culture. Science 193 : 673–675. [Google Scholar]
  29. Su X-z, Ferdig MT, Huang Y, Huynh CQ, Liu A, You J, Wootton JC, Wellems TE, 1999. A genetic map and recombination parameters of the human malaria parasite Plasmodium falciparum. Science 286 : 1351–1353. [Google Scholar]
  30. Mu J, Ferdig MT, Feng X, Joy DA, Duan J, Furuya T, Subramanian G, Aravind L, Cooper RA, Wootton JC, Xiong M, Su X-z, 2003. Multiple transporters associated with malaria parasite responses to chloroquine and quinine. Mol Microbiol 49 : 977–989. [Google Scholar]
  31. Cheesman SJ, de Roode JC, Read AF, Carter R, 2003. Real-time quantitative PCR for analysis of genetically mixed infections of malaria parasites: technique validation and applications. Mol Biochem Parasitol 131 : 83–91. [Google Scholar]
  32. McNamara DT, Thomson JM, Kasehagen LJ, Zimmerman PA, 2004. Development of a multiplex PCR-ligase detection reaction assay for diagnosis of infection by the four parasite species causing malaria in humans. J Clin Microbiol 42 : 2403–2410. [Google Scholar]
  33. Brockman A, Paul RE, Anderson TJ, Hackford I, Phaiphun L, Looareesuwan S, Nosten F, Day KP, 1999. Application of genetic markers to the identification of recrudescent Plasmodium falciparum infections on the northwestern border of Thailand. Am J Trop Med Hyg 60 : 14–21. [Google Scholar]
  34. Nyachieo A, VAN Omervier C, Laurent T, Dujardin JC, D’Alessandro U, 2005. Plasmodium falciparum genotyping by microsatellites as a method to distinguish between recrudescent and new infections. Am J Trop Med Hyg 73 : 210–213. [Google Scholar]
  35. Colborn JM, Koita OA, Cisse O, Bagayoko MW, Guthrie EJ, Krogstad DJ, 2006. Identifying and quantifying genotypes in polyclonal infections due to single species. Emerg Infect Dis 12 : 475–482. [Google Scholar]
  36. Greenhouse B, Myrick A, Dokomajilar C, Woo JM, Carlson EJ, Rosenthal PJ, Dorsey G, 2006. Validation of microsatellite markers for use in genotyping polyclonal Plasmodium falciparum infections. Am J Trop Med Hyg 75 : 836–842. [Google Scholar]
  37. Certain LK, Sibley CH, 2007. Plasmodium falciparum: a novel method for analyzing haplotypes in mixed infections. Exp Parasitol 115 : 233–241. [Google Scholar]
  38. Takala SL, Smith DL, Stine OC, Coulibaly D, Thera MA, Doumbo OK, Plowe CV, 2006. A high-throughput method for quantifying alleles and haplotypes of the malaria vaccine candidate Plasmodium falciparum merozoite surface protein-1 19 kDa. Malar J 5 : 31. [Google Scholar]
  39. Cojean S, Noel A, Garnier D, Hubert V, Le Bras J, Durand R, 2006. Lack of association between putative transporter gene polymorphisms in Plasmodium falciparum and chloroquine resistance in imported malaria isolates from Africa. Malar J 5 : 24. [Google Scholar]
  40. Martinelli A, Hunt P, Cheesman SJ, Carter R, 2004. Amplified fragment length polymorphism measures proportions of malaria parasites carrying specific alleles in complex genetic mixtures. Mol Biochem Parasitol 136 : 117–122. [Google Scholar]
  41. Hunt P, Fawcett R, Carter R, Walliker D, 2005. Estimating SNP proportions in populations of malaria parasites by sequencing: validation and applications. Mol Biochem Parasitol 143 : 173–182. [Google Scholar]
  42. Cheesman S, Creasey A, Degnan K, Kooij T, Afonso A, Cravo P, Carter R, Hunt P, 2007. Validation of pyrosequencing for accurate and high throughput estimation of allele frequencies in malaria parasites. Mol Biochem Parasitol 152 : 213–219. [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.2008.79.178
Loading
/content/journals/10.4269/ajtmh.2008.79.178
Loading

Data & Media loading...

  • Received : 18 Feb 2008
  • Accepted : 08 May 2008

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error