Volume 79, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Community-acquired pneumonia (CAP) accounts for more than two million deaths per year in children < 5 years of age. Recognition of pathogens is vital for guiding antibiotic treatment. In Gabon, no epidemiologic data on childhood CAP were available to help guide antibiotic therapy. We conducted a prospective, hospital-based, cross-sectional survey at the Albert Schweitzer Hospital, Lambarene, Gabon, to assess the importance of atypical organisms (, , , and ) and in the etiology of CAP in children by means of real-time polymerase chain reaction, cell culture, and serology. Collectively, atypical bacteria accounted for 11% of cases with a special emphasis on , accounting for 6% of cases. Clinical differentiation of atypical from typical pneumonia in children remains challenging. Molecular diagnostic methods offer fast and highly sensitive diagnostic tools and would be able to help guide antimicrobial therapy in rural areas where follow-up is difficult.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Pneumonia, The Forgotten Killer of Children, 2006. New York: The United Nations Children’s Fund/World Health Organization.
  2. Bryce J, Boschi-Pinto C, Shibuya K, Black RE, 2005. WHO estimates of the causes of death in children. Lancet 365 : 1114–1116. [Google Scholar]
  3. Technical Basis for the WHO Recommendations on the Management of Pneumonia in Children at First-Level Health Facilities. 1991. Available at: http://www.who.int/child-adolescent-health/New_Publications/CHILD_HEALTH/WHO.ARI.91.20.pdf. Accessed April 30, 2007.
  4. Rothstein E, Edwards K, 2005. Health burden of pertussis in infants and children. Pediatr Infect Dis J 24 : S39–S43. [Google Scholar]
  5. Bamba M, Jozaki K, Sugaya N, Tamai S, Ishihara J, Kori T, Shiro H, Takeuchi Y, Cho H, Nakao A, Okano Y, Kimura K, Komiyama O, Nonoyama M, Kobayashi I, Kato T, Sunakawa K, 2006. Prospective surveillance for atypical pathogens in children with community-acquired pneumonia in Japan. J Infect Chemother 12 : 36–41. [Google Scholar]
  6. Mandell LA, Wunderink RG, Anzueto A, Bartlett JG, Campbell GD, Dean NC, Dowell SF, File TM Jr, Musher DM, Niederman MS, Torres A, Whitney CG, 2007. Infectious Diseases Society of America/American Thoracic Society Consensus Guidelines on the Management of Community-Acquired Pneumonia in Adults. Clin Infect Dis 44 : S27–S72. [Google Scholar]
  7. Weber MW, Gopalakrishna G, Awomoyi A, Cunningham A, Adegbola RA, Falade AG, Ogunlesi OO, Whittle HC, Mulholland EK, 2006. The role of Chlamydia pneumoniae in acute respiratory tract infections in young children in The Gambia, west Africa. Ann Trop Paediatr 26 : 87–94. [Google Scholar]
  8. Bii CC, Yamaguchi H, Kai M, Nagai K, Sugiura Y, Taguchi H, Chakaya JM, Mbugua GG, Kamiya H, 2002. Mycoplasma pneumoniae in children with pneumonia at Mbagathi District Hospital, Nairobi. East Afr Med J 79 : 317–322. [Google Scholar]
  9. Murdoch DR, 2003. Nucleic acid amplification tests for the diagnosis of pneumonia. Clin Infect Dis 36 : 1162–1170. [Google Scholar]
  10. Ramirez JA, Ahkee S, Tolentino A, Miller RD, Summersgill JT, 1996. Diagnosis of Legionella pneumophila, Mycoplasma pneumoniae, or Chlamydia pneumoniae lower repspiratory infection using the polymerase chain reaction on a single throat swab specimen. Diagn Microbiol Infect Dis 24 : 7–14. [Google Scholar]
  11. Sloan LM, Hopkins MK, Mitchell PS, Vetter JE, Rosenblatt JE, Harmsen WS, Cockerill FR, Patel R, 2002. Multiplex Light-Cycler PCR assay for detection and differentiation of Bordetella pertussis and Bordetella parapertussis in nasopharyngeal specimens. J Clin Microbiol 40 : 96–100. [Google Scholar]
  12. Templeton KE, Scheltinga SA, van der Zee A, Diederen BM, Kruijssen AM, Goossens H, Kuijper E, Claas EC, 2003. Evaluation of real-time PCR for detection and discrimination between Bordetella pertussis, Bordetella parapertussis, and Bordetella holmesii for clinical diagnosis. J Clin Microbiol 41 : 4121–4126. [Google Scholar]
  13. Welti M, Jaton K, Altwegg M, Sahli R, Wenger A, Bille J, 2003. Development of a multiplex real-time quantitative PCR assay to detect Chlamydia pneumoniae, Legionella pneumophila and Mycoplasma pneumoniae in respiratory tract secretions. Diagn Microbiol Infect Dis 45 : 85–95. [Google Scholar]
  14. Mygind T, Birkelund S, Birkebaek NH, Ostregaard L, Jensen JS, Christiansen G, 2002. Determination of PCR efficiency in Chelex-100 purified clinical samples and comparison of real-time quantitative PCR and conventional PCR for detection of Chlamydia pneumoniae. BMC Microbiol 2 : 17. [Google Scholar]
  15. Kuoppa Y, Boman J, Scott L, Kumlin U, Eriksson I, Allard A, 2002. Quantitative detection of respiratory Chlamydia pneumoniae infection by real-time PCR. J Clin Microbiol 40: 2273–2274 [Google Scholar]
  16. Templeton KE, Scheltinga SA, Graffelman AW, van Schie JM, Crielaard JW, Sillekens P, van den Broek PJ, Goossens H, Beersma MF, Claas EC, 2003. Comparison and evaluation of real-time PCR, real-time nucleic acid sequence-based amplification, conventional PCR, and serology for the diagnosis of Mycoplasma pneumoniae. J Clin Microbiol 41 : 4366–4371. [Google Scholar]
  17. Apfalter P, Loidl M, Nadrchal R, Makristathis A, Rotter M, Bergmann M, Polterauer P, Hirschl AM, 2000. Isolation and continuous growth of Chlamydia pneumoniae from arterectomy specimens. Eur J Clin Microbiol Infect Dis 19 : 305–308. [Google Scholar]
  18. Apfalter P, Barousch W, Nehr M, Makristathis A, Willinger B, Rotter M, Hirschl AM, 2003. Comparison of a new quantitiative ompA-based real-time PCR TaqMan assay for detection of Chlamydia pneumoniae DNA in respiratory specimens with four conventional PCR assays. J Clin Microbiol 41 : 592–600. [Google Scholar]
  19. Hardegger D, Nadal D, Bossart W, Altwegg M, Dutly F, 2000. Rapid detection of Mycoplasma pneumoniae in clinical samples by real-time PCR. J Microbiol Meth 41 : 45–51. [Google Scholar]
  20. Corless CE, Guiver M, Borrow R, Edwards-Jones V, Fox AJ, Kaczmarski EB, 2001. Simultaneous detection of Neisseria meningitides, Haemophilus influenzae, and Streptococcus pneumoniae in suspected cases of meningitis and septicemia using real-time PCR. J Clin Microbiol 39 : 1553–1558. [Google Scholar]
  21. Kösters K, Riffelmann M, Wirsing von Konig CH, 2001. Evaluation of a real-time PCR assay for detection of Bordetella pertussis and B. parapertussis in clinical samples. J Med Microbiol 50 : 436–440. [Google Scholar]
  22. Michelow, K. Olsen, Lozano J, Rollins NK, Duffy LB, Ziegler T, Kauppila J, Leinonen M, McCracken GH Jr, 2004. Epidemiology and clinical characteristics of community-acquired pneumonia in hospitalized children. Pediatrics 113 : 701–707. [Google Scholar]
  23. Feikin DR, Davis M, Nwanyanwu OC, Kazembe PN, Barat LM, Wasas A, Bloland PB, Ziba C, Capper T, Huebner RE, Schwartz B, Klugman KP, Dowell SF, 2003. Antibiotic resistance and serotype distribution of Streptococcus pneumoniae colonizing rural Malawian children. Pediatr Infect Dis J 22 : 564–567. [Google Scholar]
  24. Reischl U, Lehn N, Simnacher U, Marre R, Essig A, 2003. Rapid and standardized detection of Chlamydia pneumoniae using lightCycler real-time fluorescence PCR. Eur J Clin Microbiol Infect Dis 22 : 54–57. [Google Scholar]
  25. Herrmann B, Salih MA, Yousif BE, Abdelwahab O, Mardh PA, 1994. Chlamydial etiology of acute lower respiratory tract infections in children in the Sudan. Acta Paediatr 83 : 169–172. [Google Scholar]
  26. Jantos CA, Wienpahl B, Schiefer HG, Wagner F, Hegemann JH, 1995. Infection with Chlamydia pneumoniae in infants and children with acute lower respiratory tract disease. Pediatr Infect Dis J 14 : 117–122. [Google Scholar]
  27. Wubbel L, Muniz L, Ahmed A, Trujillo M, Carubelli C, McCoig C, Abramo T, Leinonen M, McCracken GH Jr, 1999. Etiology and treatment of community-acquired pneumonia in ambulatory children. Pediatr Infect Dis J 18 : 98–104. [Google Scholar]
  28. Block S, Hedrick J, Hammerschlag MR, Cassell GH, Craft JC, 1995. Mycoplasma pneumoniae and Chlamydia pneumoniae in pediatric community-acquired pneumonia: comparative efficacy and safety of clarithromycin vs. erythromycin ethylsuccinate. Pediatr Infect Dis J 14 : 471–477. [Google Scholar]
  29. Ngeow YF, Suwanjutha S, Chantarojanasriri T, Wang F, Saniel M, Alejandria M, Hsueh PR, Ping-Ing L, Park SC, Sohn JW, Aziah AM, Liu Y, Seto WH, Ngan CC, Hadiarto M, Hood A, Cheong YM, 2005. An Asian study on the prevalence of atypical respiratory pathogens in community-acquired pneumonia. Int J Infect Dis 9 : 144–153. [Google Scholar]
  30. Hammerschlag MR, 2001. Mycoplasma pneumoniae infection. Curr Opin Infect Dis 14 : 181–186. [Google Scholar]
  31. Dragsted DM, Dohn B, Madsen J, Jensen JS, 2004. Comparison of culture and PCR for detection of Bordetella pertussis and Bordetella parapertussis under routine laboratory conditions. J Med Microbiol 53 : 749–754. [Google Scholar]
  32. Makuwa M, Souquiere S, Apetrei C, Tevi-Benissan C, Bedjabaga I, Simon F, 2000. HIV prevalence and strain diversity in Gabon: the end of a paradox. AIDS 14 : 1275–1276. [Google Scholar]
  33. UNAIDS Report on the Global AIDS Epidemic, 2006. HIV and AIDS Estimates and Data, 2005 and 2003. Available at: http://data.unaids.org/pub/GlobalReport/2006/2006_GR_ANN2_en.pdf. Accessed April 30, 2007.

Data & Media loading...

  • Received : 15 May 2007
  • Accepted : 18 Feb 2008

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error