Volume 78, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


The genetic structure was analyzed using the gene in different geographic locations and ecotopes after a short and long period after insecticide treatment. Four different localities (16–40 km apart) in the state of Paraíba, Brazil, were sampled. Analysis of molecular variance (AMOVA) showed that grouping populations according to the geographic location or ecotope resulted in a higher variance among populations within groups (Φ ranging from 0.15 to 0.17) than among groups (Φ ranging from 0.04 to 0.07). The percentage of variation was reduced among populations within groups and increased among groups (Φ = 0.08, Φ = 0.16) by grouping 1) the domiciliary populations from each village and 2) all wild populations. These data indicated that is genetically structured both ecologically and at a smaller geographic scale for domiciliary populations. Re-infestations after insecticide treatment were composed of distinct populations, pointing to variable population sources for domiciliary infestations.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. World Health Organization, 1991. Control of Chagas Disease. Report of a WHO Expert Committee. Geneva: World Health Organization.
  2. World Health Organization, 2002. Control of Chagas’ disease: second report of a WHO Expert Committee. Wld Hlth Org Tech Rep Ser 905 : 1–109. [Google Scholar]
  3. World Bank, 1993. World Development Report 1993. Investing in Health. New York: Oxford University Press.
  4. Miles MA, 1993. Culturing and biological cloning of Trypanosoma cruzi. Methods Mol Biol 21 : 15–28. [Google Scholar]
  5. SWG - Scientific Working Group, 2005. Report of the Scientific Working Group on Chagas Disease, Buenos Aires, Argentina 17–20 April (2005). Available at: http://www.who.int/tdr/diseases/chagas/swg_chagas.pdf. Accessed July 18, 2007.
  6. Silveira AC, Rezende DF, 1994. Epidemiologia e controle da transmissão vetorial da doença de Chagas no Brasil. Rev Soc Bras Med Trop 27 : 11–22. [Google Scholar]
  7. Costa J, Barth OM, Marchon-Silva V, Almeida CE, Freitas-Sibajev MGR, Panzera F, 1997. Morphological studies on the Triatoma brasiliensis Neiva,1911 (Hemiptera, Reduviidae, Triatominae) genital structures and eggs of different chromatic forms. Mem Inst Oswaldo Cruz 92 : 493–498. [Google Scholar]
  8. Costa J, Marchon-Silva V, 1998. Período de intermuda e resistência ao jejum de diferentes populações de Triatoma brasiliensis Neiva 1911 (Hemiptera: Reduviidae: Triatominae). Entomol Vect 5 : 23–34. [Google Scholar]
  9. Costa J, Almeida CE, Dujardin JP, Beard CB, 2003. Crossing experiments detect genetic incompatibility among populations of Triatoma brasiliensis Neiva, 1911 (Heteroptera: Reduviidae: Triatominae). Mem Inst Oswaldo Cruz 98 : 637–639. [Google Scholar]
  10. Costa J, Almeida JR, Britto C, Duarte R, Marchon-Silva V, Pacheco RS, 1998. Ecotopes natural infection and trophic resources of Triatoma brasiliensis (Hemiptera: Reduviidae: Triatominae). Mem Inst Oswaldo Cruz 93 : 7–13. [Google Scholar]
  11. Costa J, Freitas-Sibajev MGR, Marchon-Silva V, Pires MQ, Pacheco RS, 1997. Isoenzymes detect variation in populations of Triatoma brasiliensis (Hemiptera: Reduviidae: Triatominae). Mem Inst Oswaldo Cruz 92 : 459–464. [Google Scholar]
  12. Monteiro FA, Donnelly MJ, Beard CB, Costa J, 2004. Nested clade and phylogeographic analyses of the Chagas disease vector Triatoma brasiliensis in Northeast Brazil. Mol Phylogenet Evol 32 : 46–56. [Google Scholar]
  13. Costa J, Argolo AM, Felix M, 2006. Redescription of Triatoma melanica Neiva & Lent, 1941, new status (Hemiptera: Reduviidae: Triatominae). Zootaxa 1385 : 47–52. [Google Scholar]
  14. Costa J, Felix M, 2007. Triatoma juazeirensis sp. nov. from the state of Bahia, Northeastern Brazil (Hemiptera: Reduviidae: Triatominae). Mem Inst Oswaldo Cruz 102 : 87–90. [Google Scholar]
  15. Costa J, Almeida CE, Dotson EM, Lins A, Vinhaes M, Silveira AC, Beard CB, 2003. The epidemiologic importance of Triatoma brasiliensis as a Chagas disease vector in Brazil: a revision of domiciliary captures during 1993–1999. Mem Inst Oswaldo Cruz 98 : 443–449. [Google Scholar]
  16. Silveira AC, Vinhaes MC, Lira E, Araújo E, 2001. O Controle de Triatoma Brasiliensis e Triatoma Pseudomaculata. I: Estudo do Tempo de Reposição das Condições de Transmissão da Doença de Chagas por Triatoma brasiliensis e Triatoma pseudomaculata em Areas Submetidas ao Tratamento Químico Domiciliar, e de variáveis Ambientais Relacionadas. Brasília: Organização Pan-Americana de Saúde.
  17. Silveira AC, Vinhaes MC, Lira E, Araújo E, 2001. O Controle de Triatoma Brasiliensis e Triatoma Pseudomaculata. II: Avaliação do Controle Físico, Pela Melhoria Habitacional, e Caracterização do Ambiente Peridomiciliar Mais Menos Favorável à Persistência da Infestação e Reinfestação por Triatoma brasiliensis e Triatoma pseudomaculata. Brasília: Organização Pan-Americana de Saúde.
  18. Dujardin JP, Munoz M, Chavez T, Ponce C, Moreno J, Schofield CJ, 1998. The origin of Rhodnius prolixus in Central America. Med Vet Entomol 12 : 113–115. [Google Scholar]
  19. Dujardin JP, Schofield CJ, Tibayrenc M, 1998b. Population structure of Andean Triatoma infestans: allozyme frequencies and their epidemiological relevance. Med Vet Entomol 12 : 20–29. [Google Scholar]
  20. Noireau F, Zegarra M, Ordóñez J, Gutiérrez T, Dujardin JP, 1999. Genetic structure of Triatoma sordida (Hemiptera: Reduviidae) domestic populations from Bolivia: application on control interventions. Mem Inst Oswaldo Cruz 94 : 347–351. [Google Scholar]
  21. Noireau F, Gutierrez T, Flores R, Breniere F, Bosseno MF, Wisnivesky-Colli C, 1999. Ecogenetics of Triatoma sordida and Triatoma guasayana (Hemiptera: Reduviidae) in the Bolivian Chaco. Mem Inst Oswaldo Cruz 94 : 451–457. [Google Scholar]
  22. Schachter-Broide J, Dujardin JP, Kitron U, Gurtler RE, 2004. Spatial structuring of Triatoma infestans (Hemiptera, Reduviidae) populations from northwestern Argentina using wing geometric morphometry. J Med Entomol 41 : 643–649. [Google Scholar]
  23. Borges EC, Dujardin JP, Schofield CJ, Romanha AJ, Diotaiuti L, 2005. Dynamics between sylvatic, peridomestic and domestic populations of Triatoma brasiliensis (Hemiptera: Reduviidae) in Ceará State, Northeastern Brazil. Acta Trop 93 : 119–126. [Google Scholar]
  24. Bargues MD, Klisiowicz DR, Panzera F, Noireau F, Marcilla A, Perez R, Rojas MG, O’Connor JE, Gonzalez-Candelas F, Galvao C, Jurberg J, Carcavallo RU, Dujardin JP, Mas-Coma S, 2006. Origin and phylogeography of the Chagas disease main vector Triatoma infestans based on nuclear rDNA sequences and genome size. Infect Genet Evol 6 : 46–62. [Google Scholar]
  25. Leal IR, Silva JMC, Tabarelli M, Lacher TEJ, 2005. Mudando o curso da conservação da biodiversidade na Caatinga do Nordeste do Brasil. Megadiversidade 1 : 139–146. [Google Scholar]
  26. Junior OF, 2007. GPS TrackMaker 13.1. Available at: http://www.gpstm.com. Accessed September 18, 2007.
  27. Lacher TEJ, 1981. The comparative social behavior of Kerodon rupestris and Galea spixii and the evolution of behavior in the Caviidae. Bull Carnegie Mus 17 : 1–71. [Google Scholar]
  28. Lent H, Wygodzinsky P, 1979. Revision of the Triatominae (Hemiptera, Reduviidae) and their significance as vectors of Chagas’ disease. Bull Am Mus Nat Hist 163 : 125–520. [Google Scholar]
  29. Galvão AB, 1956. Triatoma brasiliensis macromelasoma n. subsp. (Reduviidae, Hemiptera). Rev Bras Malariol Doen Trop 7 : 455–457. [Google Scholar]
  30. Lyman DF, Monteiro FA, Escalante AA, Cordon-Rosales C, Wesson DM, Dujardin JP, Beard CB, 1999. Mitochondrial DNA sequence variation among triatomine vectors of Chagas disease. Am J Trop Med Hyg 60 : 377–386. [Google Scholar]
  31. Monteiro FA, Barrett TV, Fitzpatrick S, Cordon-Rosales C, Feliciangeli D, Beard CB, 2003. Molecular phylogeography of the Amazonian Chagas disease vectors Rhodnius prolixus and R. robustus. Mol Ecol 12 : 997–1006. [Google Scholar]
  32. Kleywegt GJ, Zou JY, Kjeldgaard M, Jones TA, 2001. Around O. Rossmann MG, Arnold E, eds. International Tables for Crystallography, Vol. F. Crystallography of Biological Macromolecules. Dordrecht, The Netherlands: Kluwer Academic Publishers, 353–356, 366–367.
  33. Kumar S, Tamura K, Nei M, 2004. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5 : 150–163. [Google Scholar]
  34. Tajima F, 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123 : 585–595. [Google Scholar]
  35. Rozas J, Sánchez-Delbarrio JC, Messeguer X, Rozas R, 2003. DNAsp, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19 : 2496–2497. [Google Scholar]
  36. Excoffier L, Smouse PE, Quattro JM, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131 : 479–491. [Google Scholar]
  37. Excoffier L, Laval G, Schneider S, 2005. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinformatics Online 1 : 47–50. [Google Scholar]
  38. Schneider S, Roessli D, Excoffier L, 2000. ARLEQUIN, Version 2.000: A Software for Population Genetics Data Analysis. Geneva: Genetics and Biometry Laboratory, Department of Anthropology, University of Geneva.
  39. Slatkin M, 1985. Gene flow in natural populations. Ann Rev Ecol Syst 16 : 393–430. [Google Scholar]
  40. Slatkin M, 1993. Isolation by distance in equilibrium and non-equilibrium populations. Evolution Int J Org Evolution 47 : 264–279. [Google Scholar]
  41. Slatkin M, 1995. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139 : 457–462. [Google Scholar]
  42. Clement M, Posada D, Crandall KA, 2000. TCS: a computer program to estimate gene genealogies. Mol Ecol 9 : 1657–1660. [Google Scholar]
  43. Templeton AR, Crandall KA, Sing CF, 1992. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data III. Cladogram estimation. Genetics 132 : 619–633. [Google Scholar]
  44. Crandall KA, Templeton AR, 1993. Empirical tests of some predictions from coalescent theory with applications to intraspecific phylogeny reconstruction. Genetics 134 : 959–969. [Google Scholar]
  45. Posada D, Crandall KA, 2001. Intraspecific gene genealogies: trees grafting into networks. Trends Ecol Evol 16 : 37–45. [Google Scholar]
  46. Wright S, 1978. Evolution and the Genetics of Populations, Vol. 4. Variability Within and Among Natural Populations. Chicago: University of Chicago Press.
  47. Costa J, Peterson AT, Beard CB, 2002. Ecologic niche modeling and differentiation of populations of Triatoma brasiliensis Neiva, 1911, the most important Chagas disease vector in Northeastern Brazil. Am J Trop Med Hyg 67 : 516–520. [Google Scholar]
  48. Tajima F, 1989. The effect of change in population size on DNA polymorphism. Genetics 123 : 597–601. [Google Scholar]
  49. Carbajal de la Fuente AL, Minoli SA, Lopes CM, Noireau F, Lazzari CR, Lorenzo MG, 2007. Flight dispersal of the Chagas disease vectors Triatoma brasiliensis and Triatoma pseudomaculata in northeastern Brazil. Acta Trop 101 : 115–119. [Google Scholar]
  50. Rojas-De-Arias A, 2001. Chagas disease prevention through improved housing using an ecosystem approach to health. Cad Saude Publica 17 : 89–97. [Google Scholar]
  51. Giordano R, Cortez JC, Paulk S, Stevens L, 2005. Genetic diversity of Triatoma infestans (Hemiptera: Reduviidae) in Chuquisaca, Bolivia based on the mitochondrial cytochrome b gene. Mem Inst Oswaldo Cruz 100 : 753–760. [Google Scholar]
  52. Dumonteil E, Tripet F, Ramirez-Sierra MJ, Payet V, Lanzaro G, Menu F, 2007. Assessment of Triatoma dimidiata dispersal in the Yucatan Peninsula of Mexico by morphometry and micro-satellite markers. Am J Trop Med Hyg 76 : 930–937. [Google Scholar]
  53. Perez de Rosas AR, Segura EL, Garcia BA, 2007. Microsatellite analysis of genetic structure in natural Triatoma infestans (Hemiptera: Reduviidae) populations from Argentina: its implication in assessing the effectiveness of Chagas’ disease vector control programmes. Mol Ecol 16 : 1401–1412. [Google Scholar]
  54. Hedrick PW, 1999. Perspective: highly variable loci and their interpretation in evolution and conservation. Evolution Int J Org Evolution 53 : 313–318. [Google Scholar]
  55. Reed DH, Frankham R, 2003. Correlation between fitness and genetic diversity. Conserv Biol 17 : 230–237. [Google Scholar]
  56. Acevedo-Whitehouse K, Gulland F, Grieg D, Amos W, 2003. Disease susceptibility in California sea lions. Nature 422 : 35. [Google Scholar]
  57. Hypsa V, Tietz DF, Zrzavý J, Rego RO, Galvao C, Jurberg J, 2002. Phylogeny and biogeography of Triatominae (Hemiptera: Reduviidae): molecular evidence of a New World origin of the Asiatic clade. Mol Phylogenet Evol 23 : 447–457. [Google Scholar]
  58. Schweigmann N, Vallve S, Muscio O, Ghillini M, Alberti A, Wisnivesky-Colli C, 1988. Dispersal flight by Triatoma infestans in an arid area of Argentina. Med Vet Entomol 2 : 401–404. [Google Scholar]
  59. García BA, Manfredi C, Fichera L, Segura EL, 2003. Variation in mitochondrial 12S and 16S ribosomal DNA sequences in natural populations of Triatoma infestans (Hemiptera: Reduviidae). Am J Trop Med Hyg 68 : 692–694. [Google Scholar]
  60. Schofield CJ, Diotaiuti L, Dujardin JP, 1999. The process of domestication in Triatominae. Mem Inst Oswaldo Cruz 94 (Suppl. 1): 375–378. [Google Scholar]
  61. Dias JCP, Machado EMM, Fernandes AL, Vinhaes MC, 2000. Esboço geral e perspectivas da doença de Chagas no Nordeste do Brasil. Cad Saude Publica 16 : 13–34. [Google Scholar]

Data & Media loading...

  • Received : 11 Aug 2007
  • Accepted : 04 Dec 2007

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error