Volume 78, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


The prevalence of human red blood cell (RBC) polymorphisms is high in areas of intense transmission, and individuals carrying these genetic traits are believed to be partially protected against severe malaria. However, it remains uncertain how RBC polymorphisms affect the susceptibility to uncomplicated malaria. We compared the risk of suffering from febrile, uncomplicated malaria between individuals carrying three common RBC polymorphisms (sickle cell trait, alpha-thalassemia, and glucose-6-phosphate-dehydrogenase deficiency) and controls. The study was performed in an area of intense malaria transmission where 202 individuals 0–19 years of age were monitored clinically for a period of 6 months. RBC polymorphisms were assessed with molecular methods, and plasma antibodies to variant surface antigens (anti-VSA IgG) and glutamate-rich protein (anti-GLURP IgG) were measured with flow cytometry and ELISA assays, respectively. Regression analyses showed that alpha-thalassemia was associated with a reduced risk of uncomplicated malaria episodes and that this advantageous effect seemed to be more predominant in children older than 5 years of age, but was independent of levels of antibodies to VSA and GLURP.


Article metrics loading...

Loading full text...

Full text loading...



  1. Mcgregor IA, 1987. Malarial immunity—current trends and prospects. Ann Trop Med Parasitol 81 : 647–656.
  2. Allison AC, 1964. Polymorphism and natural selection in human populations. Cold Spring Harb Symp Quant Biol 29 : 137–149.
  3. Flint J, Hill AVS, Bowden DK, Oppenheimer SJ, Sill PR, Serjeantson SW, Banakoiri J, Bhatia K, Alpers MP, Boyce AJ, Weatherall DJ, Clegg JB, 1986. High-frequencies of alpha-thalassemia are the result of natural-selection by malaria. Nature 321 : 744–750.
  4. Ruwende C, Khoo SC, Snow AW, Yates SNR, Kwiatkowski D, Gupta S, Warn P, Allsopp CEM, Gilbert SC, Peschu N, Newbold CI, Greenwood BM, Marsh K, Hill AVS, 1995. Natural-selection of hemizygotes and heterozygotes for G6PD deficiency in Africa by resistance to severe malaria. Nature 376 : 246–249.
  5. Beutler E, 1991. Glucose-6-phosphate-dehydrogenase deficiency. N Engl J Med 324 : 169–174.
  6. Weatherall DJ, Clegg JB, 2001. Inherited haemoglobin disorders: an increasing global health problem. Bull WHO 79 : 704–712.
  7. Aidoo M, Terlouw DJ, Kolczak M, McElroy PD, ter Kuile FO, Kariuki S, Nahlen BL, Lal AA, Udhayakumar V, 2002. Protective effects of the sickle cell gene against malaria morbidity and mortality. Lancet 359 : 1311–1312.
  8. Mockenhaupt FP, Ehrhardt S, Gellert S, Otchwemah RN, Dietz E, Anemana SD, Bienzle U, 2004. alpha(+)-thalassemia protects African children from severe malaria. Blood 104 : 2003–2006.
  9. Williams TN, Wambua S, Uyoga S, Macharia A, Mwacharo JK, Newton CRJC, Maitland K, 2005. Both heterozygous and homozygous alpha(+) thalassemias protect against severe and fatal Plasmodium falciparum malaria on the coast of Kenya. Blood 106 : 368–371.
  10. Allison AC, 1954. Protection afforded by sickle-cell trait against subtertian malarial infection. BMJ 1 : 290–294.
  11. Hill AVS, Allsopp CEM, Kwiatkowski D, Anstey NM, Twumasi P, Rowe PA, Bennett S, Brewster D, Mcmichael AJ, Greenwood BM, 1991. Common West African Hla antigens are associated with protection from severe malaria. Nature 352 : 595–600.
  12. Williams TN, Mwangi TW, Wambua S, Alexander ND, Kortok M, Snow RW, Marsh K, 2005. Sickle cell trait and the risk of Plasmodium falciparum malaria and other childhood diseases. J Infect Dis 192 : 178–186.
  13. Guindo A, Fairhurst RM, Doumbo O, Wellems TE, Diallo D, 2007. X-linked G6PD deficiency protects hemizygous males but not heterozygous females against severe malaria. PLoS Med 4 : e66.
  14. Wambua S, Mwangi TW, Kortok M, Uyoga S, Macharia AW, Mwacharo JK, Weatherall DJ, Snow RW, Marsh K, Williams TN, 2006. The effect of alpha+ thalassaemia on the incidence of malaria and other diseases in children living on the coast of Kenya. PLoS Med 3 : e158.
  15. Williams TN, Maitland K, Bennett S, Ganczakowski M, Peto TEA, Newbold CI, Bowden DK, Weatherall DJ, Clegg JB, 1996. High incidence of malaria in alpha-thalassaemic children. Nature 383 : 522–525.
  16. Oppenheimer SJ, Hill AVS, Gibson FD, Macfarlane SB, Moody JB, Pringle J, 1987. The interaction of alpha-Thalassemia with malaria. Trans R Soc Trop Med Hyg 81 : 322–326.
  17. Roth EF, Raventossuarez C, Rinaldi A, Nagel RL, 1983. Glucose-6-phosphate-dehydrogenase deficiency inhibits in vitro growth of Plasmodium falciparum. Proc Natl Acad Sci USA 80 : 298–299.
  18. Pasvol G, Weatherall DJ, Wilson RJM, 1978. Cellular mechanism for protective effect of haemoglobin-S against P. falciparum malaria. Nature 274 : 701–703.
  19. Cappadoro M, Giribaldi G, O’Brien E, Turrini F, Mannu F, Ulliers D, Simula G, Luzzatto L, Arese P, 1998. Early phagocytosis of glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes parasitized by Plasmodium falciparum may explain malaria protection in G6PD deficiency. Blood 92 : 2527–2534.
  20. Ayi K, Turrini F, Piga A, Arese P, 2004. Enhanced phagocytosis of ring-parasitized mutant erythrocytes: a common mechanism that may explain protection against falciparum malaria in sickle trait and beta-thalassemia trait. Blood 104 : 3364–3371.
  21. Luzzi GA, Merry AH, Newbold CI, Marsh K, Pasvol G, 1991. Protection by alpha-thalassemia against Plasmodium falciparum malaria—modified surface-antigen expression rather than impaired growth or cytoadherence. Immunol Lett 30 : 233–240.
  22. Marsh K, Otoo L, Hayes RJ, Carson DC, Greenwood BM, 1989. Antibodies to blood stage antigens of Plasmodium falciparum in rural Gambians and their relation to protection against infection. Trans R Soc Trop Med Hyg 83 : 293–303.
  23. Pasvol G, 1992. A cellular mechanism for the protection by thalassemia against Plasmodium falciparum malaria. Br J Haematol 82 : 267.
  24. Bayoumi RA, Abuzeid YA, Abdulhadi NH, Saeed BO, Theander TG, Hviid L, Ghalib HW, Nugud AHD, Jepsen S, Jensen JB, 1990. Cell-mediated immune-responses to Plasmodium falciparum purified soluble antigens in sickle-cell trait subjects. Immunol Lett 25 : 243–250.
  25. Arie T, Fairhurst RM, Brittain NJ, Wellems TE, Dvorak JA, 2005. Hemogloblin C modulates the surface topography of Plasmodium falciparum-infected erythrocytes. J Struct Bio 150 : 163–169.
  26. Verra F, Simpore J, Warimwe GM, Tetteh KK, Howard TOF, Bancone G, Avellino P, Blot I, Fegan G, Bull PC, Williams TN, Conway DJ, Marsh K, Modiano D, 2007. Haemoglobin C and S role in acquired immunity against Plasmodium falciparum malaria. PloS One e978.
  27. Cabrera G, Cot M, Migot-Nabias F, Kremsner PG, Deloron P, Luty AJF, 2005. The sickle cell trait is associated with enhanced immunoglobulin G antibody responses to Plasmodium falciparum variant surface antigens. J Infect Dis 191 : 1631–1638.
  28. Jakobsen PH, Riley EM, Allen SJ, Larsen SO, Bennett S, Jepsen S, Greenwood BM, 1991. Differential antibody-response of Gambian donors to soluble Plasmodium falciparum antigens. Trans R Soc Trop Med Hyg 85 : 26–32.
  29. Allen SJ, Bennett S, Riley EM, Rowe PA, Jakobsen PH, Odonnell A, Greenwood BM, 1992. Morbidity from malaria and immune-responses to defined Plasmodium falciparum antigens in children with sickle-cell trait in the Gambia. Trans R Soc Trop Med Hyg 86 : 494–498.
  30. Le Hesran JY, Personne I, Personne P, Fievet N, Dubois B, Beyeme M, Boudin C, Cot M, Deloron P, 1999. Longitudinal study of Plasmodium falciparum infection and immune responses in infants with or without the sickle cell trait. Int J Epidemiol 28 : 793–798.
  31. Maya DWM, Mavoungou E, Deloron P, Theisen M, Ntoumi F, 2006. Distribution of IgG subclass antibodies specific for Plasmodium falciparum glutamate-rich-protein molecule in sickle cell trait children with asymptomatic infections. Exp Parasitol 112 : 92–98.
  32. Ntoumi F, Ekala MT, Makuwa M, Lekoulou F, Mercereau-Puijalon O, Deloron P, 2002. Sickle cell trait carriage: imbalanced distribution of IgG subclass antibodies reactive to Plasmodium falciparum family-specific MSP2 peptides in serum samples from Gabonese children. Immunol Lett 84 : 9–16.
  33. Sarr JB, Pelleau S, Toly C, Guitard J, Konate L, Deloron P, Garcia A, Migot-Nabias F, 2006. Impact of red blood cell polymorphisms on the antibody response to Plasmodium falciparum in Senegal. Microbes Infect 8 : 1260–1268.
  34. Lusingu JPA, Vestergaard LS, Mmbando BP, Drakeley CJ, Jones C, Akida J, Savaeli ZX, Kitua AY, Lemnge MM, Theander TG, 2004. Malaria morbidity and immunity among residents of villages with different Plasmodium falciparum transmission intensity in North-Eastern Tanzania. Malar J 3 : 26.
  35. Pearce RJ, Drakeley C, Chandramohan D, Mosha F, Roper C, 2003. Molecular determination of point mutation haplotypes in the dihydrofolate reductase and dihydropteroate synthase of Plasmodium falciparum in three districts of northern Tanzania. Antimicrob Agents Chemo 47 : 1347–1354.
  36. Enevold A, Vestergaard LS, Lusingu J, Drakeley CJ, Lemnge MM, Theander TG, Bygbjerg IC, Alifrangis M, 2005. Rapid screening for glucose-6-phosphate dehydrogenase deficiency and haemoglobin polymorphisms in Africa by a simple high-throughput SSOP-ELISA method. Malar J 4 : 61.
  37. Liu YT, Old JM, Miles K, Fisher CA, Weatherall DJ, Clegg JB, 2000. Rapid detection of alpha-thalassaemia deletions and alpha-globin gene triplication by multiplex polymerase chain reactions. Br J Haematol 108 : 295–299.
  38. Lusingu JPA, Vestergaard LS, Alifrangis M, Mmbando BP, Theisen M, Kitua AY, Lemnge MM, Theander TG, 2005. Cytophilic antibodies to Plasmodium falciparum glutamate rich protein are associated with malaria protection in an area of holoendemic transmission. Malar J 4 : 48.
  39. Staalsoe T, Giha HA, Dodoo D, Theander TG, Hviid L, 1999. Detection of antibodies to variant antigens on Plasmodium falciparum- infected erythrocytes by flow cytometry. Cytometry 35 : 329–336.
  40. Mockenhaupt FP, Falusi AG, May J, Ademowo OG, Olumese PE, Meyer CG, Bienzle U, 1999. The contribution of alpha(+)-thalassaemia to anaemia in a Nigerian population exposed to intense malaria transmission. Trop Med Int Health 4 : 302–307.
  41. Modiano G, Morpurgo G, Terrenato L, Novelletto A, Dirienzo A, Colombo B, Purpura M, Mariani M, Santachiarabenerecetti S, Brega A, Dixit KA, Shrestha SL, Lania A, Wanachiwanawin W, Luzzatto L, 1991. Protection against malaria morbidity—near-fixation of the alpha-thalassemia gene in a Nepalese population. Am J Hum Genet 48 : 390–397.
  42. Allen SJ, O’Donnell A, Alexander NDE, Alpers MP, Peto TEA, Clegg JB, Weatherall DJ, 1997. Alpha(+)-thalassemia protects children against disease caused by other infections as well as malaria. Proc Natl Acad Sci USA 94 : 14736–14741.
  43. Williams TN, Mwangi TW, Roberts DJ, Alexander ND, Weatherall DJ, Wambua S, Kortok M, Snow RW, Marsh K, 2005. An immune basis for malaria protection by the sickle cell trait. PLoS Med 2 : 441–445.
  44. Dodoo D, Theisen M, Kurtzhals JAL, Akanmori BD, Koram KA, Jepsen S, Nkrumah FK, Theander TG, Hviid L, 2000. Naturally acquired antibodies to the glutamate-rich protein are associated with protection against Plasmodium falciparum malaria. J Infect Dis 181 : 1202–1205.
  45. Bull PC, Lowe BS, Kortok M, Molyneux CS, Newbold CI, Marsh K, 1998. Parasite antigens on the infected red cell surface are targets for naturally acquired immunity to malaria. Nat Med 4 : 358–360.
  46. Oeuvray C, Theisen M, Rogier C, Trape JF, Jepsen S, Druilhe P, 2000. Cytophilic immunoglobulin responses to Plasmodium falciparum glutamate-rich protein are correlated with protection against clinical malaria in Dielmo, Senegal. Infect Immun 68 : 2617–2620.
  47. Marsh K, Howard RJ, 1986. Antigens induced on erythrocytes by P. falciparum: expression of diverse and conserved determinants. Science 231 : 150–153.
  48. Bull PC, Marsh K, 2002. The role of antibodies to Plasmodium falciparum-infected-erythrocyte surface antigens in naturally acquired immunity to malaria. Trends Microbiol 10 : 55–58.
  49. Urban BC, Shafi MJ, Cordery DV, Macharia A, Lowe B, Marsh K, Williams TN, 2006. Frequencies of peripheral blood myeloid cells in healthy Kenyan children with alpha+ thalassemia and the sickle cell trait. Am J Trop Med Hyg 74 : 578–584.
  50. Enevold A, Alifrangis M, Sanchez J, Carneiro I, Roper C, Børsting C, Lusingu J, Vestergaard L, Lemnge M, Morling N, Riley E, Drakeley C, 2007. Associations between alpha +-Thalassemia and Plasmodium falciparum Malarial Infection in Northeastern Tanzania. J Infect Dis 196 : 451–459.
  51. Williams TN, Mwangi TW, Wambua S, Peto TEA, Weatherall DJ, Gupta S, Recker M, Penman BS, Uyoga S, Macharia A, Mwacharo JK, Snow RW, Marsh K, 2005. Negative epistasis between the malaria-protective effects of alpha(+)-thalassemia and the sickle cell trait. Nat Gen 37 : 1253–1257.

Data & Media loading...

  • Received : 15 Aug 2007
  • Accepted : 11 Jan 2008

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error