Volume 78, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


To reduce the assay time for detecting virus-specific antibodies in serum, we developed microarray-based active immunoassay techniques for detecting West Nile virus (WNV)-specific IgM molecules in chicken blood. The assay uses electrophoretic concentration of IgM molecules onto WNV antigens arrayed on a dialysis membrane followed by detection of bound IgM molecules with functionalized magnetic beads as active labels. This assay takes only 15 minutes and has the same sensitivity as a commercially available human WNV IgM antibody-capture enzyme-linked immunosorbent assay (commonly called a MAC-ELISA) modified for use with chicken sera.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Chowers MY, Lang R, Nassar F, Ben-David D, Giladi M, Rubinshtein E, Itzhaki A, Mishal J, Siegman-Igra Y, Kitzes R, Pick N, Landau Z, Wolf D, Bin H, Mendelson E, Pitlik SD, Weinberger M, 2001. Clinical characteristics of the West Nile fever outbreak, Israel, 2000. Emerg Infect Dis 4 : 675–678. [Google Scholar]
  2. Lanciotti RS, Roehrig JT, Deubel V, Smith J, Parker M, Steel K, Crise B, Volpe KE, Crabtree MB, Scherret JH, Hall RA, MacKenzie JS, Cropp CB, Panigrahy B, Ostlund E, Schmitt B, Malkinson M, Banet C, Weissman J, Komar N, Savage HM, Stone W, McNamara T, Gubler DJ, 1999. Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 286 : 2333–2337. [Google Scholar]
  3. Murphy FA, Fauquet CM, Bishop DHL, Ghabrial SA, Jarvis AW, Martelli GP, Mayo MA, Summers MD, 1995. Virus taxonomy, classification and nomenclature of viruses. Arch Virol 10 (Suppl): 1–586. [Google Scholar]
  4. Centers for Disease Control, 2007. Statistics CDC, Surveillance, and Control. Available at: http://www.cdc.gov/NCIDOD/DVBID/WESTNILE/surv&controlhtm. Accessed August 14, 2007.
  5. Elizondo-Quiroga D, Davis CT, Fernandez-Salas I, Escobar-Lopex R, Velasco Olmos D, Soto Gastalum LC, Aviles Acosta M, Elizondo-Quiroga A, Gonzalez-Rojas JI, Contreras Cordero JF, Guzman H, Travassos da Rosa A, Blitvich BJ, Barrett AD, Beaty BJ, Tesh RB, 2005. West Nile Virus isolation in human and mosquitoes, Mexico. Emerg Infect Dis 11 : 1449–1452. [Google Scholar]
  6. Weir E, Shapiro H, 2004. West Nile virus: round five. CMAJ 170 : 1669–1670. [Google Scholar]
  7. Komar N, Clark G, 2006. West Nile virus activity in Latin America and the Caribbean. Rev Panam Salud Publica 19 : 112–117. [Google Scholar]
  8. Campbell GL, Marfin AA, Lanciotti RS, Gubler DJ, 2002. West Nile virus. Lancet Infect Dis 2 : 519–529. [Google Scholar]
  9. Centers for Disease Control and Prevention, 2002. West Nile virus activity—United States, September 26-October 2, 2002, and investigations of West Nile virus infections in recipients of blood transfusion and organ transplantation. Morb Mortal Wkly Rep 51 : 884–895. [Google Scholar]
  10. Centers for Disease Control and Prevention, 2002. Possible West Nile virus transmission to an infant through breast-feeding—Michigan, 2002. Morb Mortal Wkly Rep 51 : 879. [Google Scholar]
  11. Centers for Disease Control and Prevention, 2002. Intrauterine West Nile virus infection—New York. Morb Mortal Wkly Rep 51 : 1135–1136. [Google Scholar]
  12. Centers for Disease Control and Prevention, 2002. Laboratory-acquired West Nile virus infections—United States, 2002. Morb Mortal Wkly Rep 51 : 1133–1135. [Google Scholar]
  13. Martin DA, Muth DA, Brown T, Johnson AJ, Karabatsos N, Rochrig JT, 2000. Standardization of immunoglobulin M capture enzyme-linked immunosorbent assays for routine diagnosis of arboviral infections. J Clin Microbiol 38 : 1823–1826. [Google Scholar]
  14. Malan AK, Martins TB, Hill HR, Litwin CM, 2004. Evaluations of commercial West Nile virus immunoglobulin G (IgG) and IgM enzyme immunoassays show the value of continuous validation. J Clin Microbiol 42 : 727–733. [Google Scholar]
  15. Prince HE, Lape-Nixon M, Moore RJ, Hogrefe WR, 2004. Utility of the focus technologies West Nile virus immunoglobulin M capture enzyme-linked immunosorbent assay for testing cerebrospinal fluid. J Clin Microbiol 42 : 12–15. [Google Scholar]
  16. Kuby J, 1997. Immunology. Third edition. New York: WH Freeman and Co.
  17. Focus Diagnostics, 2007. West Nile virus IgM Capture DxSelect. Available at: http://www.focusdx.com/. Accessed August 14, 2007.
  18. PanBio, 2007. West Nile virus IgM Capture ELISA. Available at: http://www.panbio.com/. Accessed August 14, 2007.
  19. Wong SJ, Demarest VL, Boyle RH, Wang T, Ledizet M, Kar K, Kramer LD, Fikrig E, Koski R, 2004. Detection of human anti-flavivirus antibodies with a West Nile virus recombinant antigen microsphere immunoassay. J Clin Microbiol 42 : 65–72. [Google Scholar]
  20. Johnson AJ, Noga AJ, Kosoy O, Lanciotti RS, Johnson AA, Biggerstaff BJ, 2005. Duplex microsphere-based immunoassay for detection of anti-West Nile virus and anti-St. Louis encephalitis virus immunoglobulin m antibodies. Clin Diag Lab Immunol 12 : 566–574. [Google Scholar]
  21. Ewalt KL, Haigis RW, Rooney R, Ackley D, Krihak M, 2001. Detection of biological toxins on an active electronic microchip. Anal Biochem 289 : 162–172. [Google Scholar]
  22. Morozov VN, Morozova TY, 2003. Electrophoresis-assisted active immunoassay. Anal Chem 75 : 6813–6819. [Google Scholar]
  23. Morozov VN, Evanskey M, Tan YK, Shaffer D, Morozova TY, Bailey C, 2003. Ultrafiltration membrane for electrophoretic capturing of pathogens for AFM imaging. Langmuir 22 : 1742–1748. [Google Scholar]
  24. Morozov VN, Morozova TY, 2006. Active bead-linked immuno-assay on protein microarrays. Anal Chim Acta 564 : 40–52. [Google Scholar]
  25. Neuman de Vegvara HE, Robinson WH, 2004. Microarray profiling of antiviral antibodies for the development of diagnostics, vaccines, and therapeutics. Clin Immunol 111 : 196–201. [Google Scholar]
  26. Mezzasoma L, Bacarese-Hamilton T, Di Cristina M, Rossi R, Bistoni F, Crisanti A, 2002. Antigen microarrays for serodiagnosis of infectious diseases. Clin Chem 481 : 121–130. [Google Scholar]
  27. Bacarese-Hamilton T, Mezzasoma L, Ardizzoni A, Bistoni F, Crisanti AJ, 2004. Serodiagnosis of infectious diseases with antigen microarrays. App Microbiol 96 : 10–17. [Google Scholar]
  28. Johnstone A, Thorpe R, 1988. Immunochemistry in Practice. Oxford: Blackwell Scientific Publications.
  29. Morozov VN, Morozova TY, 1999. Electrospray deposition as a method to fabricate functionally active protein films. Anal Chem 71 : 1415–1420. [Google Scholar]
  30. Morozov VN, Morozova TY, 1999. Electrospray deposition as a method for mass fabrication of mono- and multicomponent microarrays of biological and biologically active substances. Anal Chem 71 : 3110–3117. [Google Scholar]
  31. Singh R, Maloney EK, 2002. Labeling of antibodies by in situ modification of thiol groups generated from selenol-catalyzed reduction of native disulfide bonds. Anal Biochem 304 : 147–156. [Google Scholar]
  32. Turell MJ, O’Guinn M, Oliver J, 2000. Potential for New York mosquitoes to transmit West Nile virus. Am J Trop Med Hyg 62 : 413–414. [Google Scholar]
  33. Johnson AJ, Langevin S, Wolff KL, Komar N, 2003. Detection of anti-West Nile virus immunoglobulin M in chicken serum by an enzyme-linked immunosorbent assay. J Clin Microbiol 41 : 2002–2007. [Google Scholar]

Data & Media loading...

  • Received : 22 Aug 2007
  • Accepted : 21 Oct 2007

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error