1921
Volume 78, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

A population genetic analysis of gene flow was conducted among 619 from nine collections distributed among six geographic regions of Venezuela. Genetic markers included a 387-basepair region of the mitochondrial NADH dehydrogenase 4 (ND4) gene and single nucleotide polymorphisms (SNPs) at 11 nuclear loci. Genotypes at SNP loci were identified using melting curve analysis. Six different ND4 haplotypes were detected and patterns of variation suggested that collections were isolated by distance. The variance in SNP allele frequencies was much less than the variance in haplotype frequencies and a pattern of isolation by distance was not detected. from eight collections were orally challenged with dengue 2 virus. Disseminated infection rates ranged from 77% to 95%. The percentage of mosquitoes exhibiting a midgut infection barrier ranged from 2% to 15%, and those exhibiting a midgut escape barrier ranged from 2% to 18%. Venezuelan appear to be susceptible to dengue virus infection.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.2008.78.479
2008-03-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/14761645/78/3/0780479.html?itemId=/content/journals/10.4269/ajtmh.2008.78.479&mimeType=html&fmt=ahah

References

  1. Monath TP, 1994. Dengue: the risk to developed and developing countries. Proc Natl Acad Sci USA 91 : 2395–2400. [Google Scholar]
  2. World Health Organization, 2000. Strengthening the Implementation of the Global Strategy for Dengue Fever/Dengue Hemorrhagic Fever Prevention and Control. Geneva: World Health Organization.
  3. Gubler DJ, 2002. The global emergence/resurgence of arboviral diseases as public health problems. Arch Med Res 33 : 330–342. [Google Scholar]
  4. Gubler DJ, 2002. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 10 : 100–103. [Google Scholar]
  5. Ministerio de Salud y Desarrollo Social, 2000. Alerta, Reporte Epidemiologico Semanal 36. Caracas: Venezuela.
  6. Ministerio de Salud y Desarrollo Social, 2002. Alerta, Reporte Epidemiologico Semanal 52. Caracas: Venezuela.
  7. Barrera R, Navarro J, Mora J, Domínguez D, González J, 1995. Public service deficiencies and Aedes aegypti breeding sites in Venezuela. Bull Pan Am Health Organ 29 : 193–205. [Google Scholar]
  8. Abe M, McCall PJ, Lenhart A, Villegas E, Kroeger A, 2005. The Buen Pastor cemetery in Trujillo, Venezuela: measuring dengue vector output from a public area. Trop Med Int Health 10 : 597–603. [Google Scholar]
  9. Bisset JA, Rodriguez MM, Molina D, Diaz C, Soca LA, 2001. High esterases as mechanism of resistance to organophosphate insecticides in Aedes aegypti strains. Rev Cubana Med Trop 53 : 37–43. [Google Scholar]
  10. Rodriguez MM, Bisset J, De Fernandez DM, Lauzan L, Soca A, 2001. Detection of insecticide resistance in Aedes aegypti (Diptera: Culicidae) from Cuba and Venezuela. J Med Entomol 38 : 623–628. [Google Scholar]
  11. Bennett KE, Olson KE, Munoz Mde L, Fernandez-Salas I, Farfan-Ale JA, Higgs S, Black WC, Beaty BJ, 2002. Variation in vector competence for dengue 2 virus among 24 collections of Aedes aegypti from Mexico and the United States. Am J Trop Med Hyg 67 : 85–92. [Google Scholar]
  12. Gubler DJ, Nalim S, Tan R, Saipan H, Sulianti Saroso J, 1979. Variation in susceptibility to oral infection with dengue viruses among geographic strains of Aedes aegypti. Am J Trop Med Hyg 28 : 1045–1052. [Google Scholar]
  13. Tabachnick WJ, Wallis GP, Aitken TH, Miller BR, Amato GD, Lorenz L, Powell JR, Beaty BJ, 1985. Oral infection of Aedes aegypti with yellow fever virus: geographic variation and genetic considerations. Am J Trop Med Hyg 34 : 1219–1224. [Google Scholar]
  14. Tabachnick WJ, 1991. The yellow fever mosquito: evolutionary genetics and arthropod-borne disease. Am Entomologist 37 : 14–24. [Google Scholar]
  15. Tabachnick WJ, Powell JR, 1979. World-wide survey of genetic variation in the yellow fever mosquito, Aedes aegypti. Genet Res 34 : 215–229. [Google Scholar]
  16. Wallis GP, Tabachnick WJ, Powell JR, 1983. Macrogeographic genetic variation in a human commensal: Aedes aegypti, the yellow fever mosquito. Genet Res 41 : 241–258. [Google Scholar]
  17. Apostol BL, Black WC, Reiter P, Miller BR, 1996. Population genetics with RAPD-PCR markers: the breeding structure of Aedes aegypti in Puerto Rico. Heredity 76 : 325–334. [Google Scholar]
  18. Gorrochotegui-Escalante N, Gomez-Machorro C, Lozano-Fuentes S, Fernandez-Salas I, de Lourdes Munoz M, Farfan-Ale JA, Garcia-Rejon J, Beaty BJ, Black WC IV, 2002. Breeding structure of Aedes aegypti populations in Mexico varies by region. Am J Trop Med Hyg 66 : 213–222. [Google Scholar]
  19. Gorrochotegui-Escalante N, de Lourdes Munoz M, Fernandez-Salas I, Beaty BJ, Black WC IV, 2000. Genetic isolation by distance among Aedes aegypti populations along the northeastern coast of Mexico. Am J Trop Med Hyg 62 : 200–209. [Google Scholar]
  20. Herrera F, Urdaneta L, Rivero J, Zoghbi N, Ruiz J, Carrasquel G, Martinez JA, Pernalete M, Villegas P, Montoya A, Rubio-Palis Y, Rojas E, 2006. Population genetic structure of the dengue mosquito Aedes aegypti in Venezuela. Mem Inst Oswaldo Cruz 101 : 625–633. [Google Scholar]
  21. da Costa-da-Silva AL, Capurro ML, Bracco JE, 2005. Genetic lineages in the yellow fever mosquito Aedes (Stegomyia) aegypti (Diptera: Culicidae) from Peri. Mem Inst Oswaldo Cruz 100 : 639–644. [Google Scholar]
  22. Huber K, Le Loan L, Hoang TH, Ravel S, Rodhain F, Failloux AB, 2002. Genetic differentiation of the dengue vector, Aedes aegypti (Ho Chi Minh City, Vietnam) using microsatellite markers. Mol Ecol 11 : 1629–1635. [Google Scholar]
  23. Morlais I, Severson DW, 2003. Intraspecific DNA variation in nuclear genes of the mosquito Aedes aegypti. Insect Mol Biol 12 : 631–639. [Google Scholar]
  24. Black WC, Gorrochetegui-Escalante N, Randle NP, Donnelly MJ, 2008. The yin and yang of linkage disequilibrium: mapping of genes and nucleotides conferring insecticide resistance in insect disease vectors. Aksoy S, ed. Insect Transgenesis. Austin, TX: Landes Biosciences.
  25. Gorrochotegui-Escalante N, Lozano-Fuentes S, Bennett KE, Molina-Cruz A, Beaty BJ, Black WC, 2005. Association mapping of segregating sites in the early trypsin gene and susceptibility to dengue-2 virus in the mosquito Aedes aegypti. Insect Biochem Mol Bio 35 : 771–788. [Google Scholar]
  26. Black WC, Vontas JG, 2007. Affordable assays for genotyping single nucleotide polymorphisms in insects. Insect Mol Biol 16 : 377–387. [Google Scholar]
  27. Papp AC, Pinsonneault JK, Cooke G, Sadee W, 2003. Single nucleotide polymorphism genotyping using allele-specific PCR and fluorescence melting curves. Biotechniques 34 : 1068–1072. [Google Scholar]
  28. Ye J, Parra EJ, Sosnoski DM, Hiester K, Underhill PA, Shriver MD, 2002. Melting curve SNP (McSNP) genotyping: a useful approach for diallelic genotyping in forensic science. J Forensic Sci 47 : 593–600. [Google Scholar]
  29. Black WC, DuTeau NM, 1997. RAPD-PCR and SSCP analysis for insect population genetic studies. Crampton J, Beard CB, Louis C, eds. The Molecular Biology of Insect Disease Vectors: A Methods Manual, 514–531.
  30. Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R, 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19 : 2496–2497. [Google Scholar]
  31. Nei M, Miller JC, 1990. A simple method for estimating average number of nucleotide substitutions within and between populations from restriction data. Genetics 125 : 873–879. [Google Scholar]
  32. Germer S, Higuchi R, 1999. Single-tube genotyping without oligonucleotide probes. Genome Res 9 : 72–78. [Google Scholar]
  33. Wang J, Chuang K, Ahluwalia M, Patel S, Umblas N, Mirel D, Higuchi R, Germer S, 2005. High-throughput SNP genotyping by single-tube PCR with Tm-shift primers. Biotechniques 39 : 885–893. [Google Scholar]
  34. Okimoto R, Dodgson JB, 1996. Improved PCR amplification of multiple specific alleles (PAMSA) using internally mismatched primers. Biotechniques 21 : 20. [Google Scholar]
  35. Excoffier L, Smouse PE, Quattro JM, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131 : 479–491. [Google Scholar]
  36. Slatkin M, 1993. Isolation by distance in equilibrium and non-equilibrium populations. Evolution Int J Org Evolution 47 : 264–279. [Google Scholar]
  37. Sneath PH, Sokal RR, 1962. Numerical taxonomy. Nature 193 : 855–860. [Google Scholar]
  38. Lim A, Zhang LX, 1999. WebPHYLIP: a web interface to PHYLIP. Bioinformatics 15 : 1068–1069. [Google Scholar]
  39. Black WC, Krafsur ES, 1985. A FORTRAN program for the calculation and analysis of 2-locus linkage disequilibrium coefficients. Theor Appl Genet 70 : 491–496. [Google Scholar]
  40. Deubel V, Kinney RM, Trent DW, 1986. Nucleotide sequence and deduced amino acid sequence of the structural proteins of dengue type 2 virus, Jamaica genotype. Virology 155 : 365–377. [Google Scholar]
  41. Diaz FJ, Black WC, Farfan-Ale JA, Lorono-Pino MA, Olson KE, Beaty BJ, 2006. Dengue virus circulation and evolution in Mexico: a phylogenetic perspective. Arch Med Res 37 : 760–773. [Google Scholar]
  42. Bennett KE, Olson KE, Munoz Mde L, Fernandez-Salas I, Farfan-Ale JA, Higgs S, Black WC, Beaty BJ, 2002. Variation in vector competence for dengue 2 virus among 24 collections of Aedes aegypti from Mexico and the United States. Am J Trop Med Hyg 67 : 85–92. [Google Scholar]
  43. Bennett KE, Beaty BJ, Black WC, 2005. Selection of D2S3, an Aedes aegypti (Diptera: Culicidae) strain with high oral susceptibility to dengue 2 virus and D2 MEB, a strain with a midgut barrier to dengue 2 escape. J Med Entomol 42 : 110–119. [Google Scholar]
  44. Gould EA, Buckley A, Cammack N, 1985. Use of the biotin-streptavidin interaction to improve flavivirus detection by immunofluorescence and ELISA tests. J Virol Methods 11 : 41–48. [Google Scholar]
  45. Gould EA, Buckley A, Cammack N, Barrett AD, Clegg JC, Ishak R, Varma MG, 1985. Examination of the immunological relationships between flaviviruses using yellow fever virus monoclonal antibodies. J Gen Virol 66 : 1369–1382. [Google Scholar]
  46. Saavedra-Rodriguez K, Urdaneta-Marquez L, Rajatileka S, Moulton M, Flores AE, Fernandez-Salas I, Bisset J, Rodriguez M, Mccall PJ, Donnelly MJ, Ranson H, Hemingway J, Black WC, 2007. A mutation in the voltage gated sodium channel gene associated with pyrethroid resistance in Latin American Aedes aegypti. Insect Mol Biol 16 : 785–798. [Google Scholar]
  47. Bosio CF, Harrington LC, Jones JW, Sithiprasasna R, Norris DE, Scott TW, 2005. Genetic structure of Aedes aegypti populations in Thailand using mitochondrial DNA. Am J Trop Med Hyg 72 : 434–442. [Google Scholar]
  48. Weir BS, Cockerham CC, 1984. Estimating F-statistics for the analysis of population structure. Evolution Int J Org Evolution 38 : 1358–1370. [Google Scholar]
  49. Bennett KE, Beaty BJ, Black WC, 2005. Selection of D2S3, an Aedes aegypti (Diptera: Culicidae) strain with high oral susceptibility to Dengue 2 virus and D2MEB, a strain with a midgut barrier to Dengue 2 escape. J Med Entomol 42 : 110–119. [Google Scholar]
  50. Wright S, 1965. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution Int J Org Evolution 19 : 395–420. [Google Scholar]
  51. Slatkin M, 1991. Inbreeding coefficients and coalescence times. Genet Res 58 : 167–175. [Google Scholar]
  52. Dunn KA, Bielawski JP, Yang ZH, 2001. Substitution rates in Drosophila nuclear genes: implications for translational selection. Genetics 157 : 295–305. [Google Scholar]
  53. Bazin E, Glemin S, Galtier N, 2006. Population size does not influence mitochondrial genetic diversity in animals. Science 312 : 570–572. [Google Scholar]
  54. Lorenz L, Beaty BJ, Aitken TH, Wallis GP, Tabachnick WJ, 1984. The effect of colonization upon Aedes aegypti: susceptibility to oral infection with yellow fever cirus. Am J Trop Med Hyg 33 : 690–694. [Google Scholar]
  55. Tabachnick WJ, Wallis GP, Aitken TH, Miller BR, Amato GD, Lorenz L, Powell JR, Beaty BJ, 1985. Oral infection of Aedes aegypti with yellow fever virus: geographic variation and genetic considerations. Am J Trop Med Hyg 34 : 1219–1224. [Google Scholar]
  56. Wallis GP, Aitken TH, Beaty BJ, Lorenz L, Amato GD, Tabachnick WJ, 1985. Selection for susceptibility and refractoriness of Aedes aegypti to oral infection with yellow fever Virus. Am J Trop Med Hyg 34 : 1225–1231. [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.2008.78.479
Loading
/content/journals/10.4269/ajtmh.2008.78.479
Loading

Data & Media loading...

  • Received : 26 Jul 2007
  • Accepted : 28 Nov 2007

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error