1921
Volume 78, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

is the only reported Chagas disease vector in Campeche, Mexico. The purpose of this study was to determine the genetic variability of vectors from Campeche coastal and rain forest areas and establish a phylogenetic relationship with other populations by analyzing the internal transcribed spacer-2 (ITS-2) region. The sequence length of samples from Campeche ranged from 469 to 478 basepairs. The ITS-2 variability among the populations enabled us to classify them into two clades with an 18–22 nucleotide difference. The genetic distance (0.042) between them confirms this divergence. Phylogenetic analysis of gene genealogies confirmed these two clades. Furthermore, the population genetic analyses showed two groups with little genetic similarity or migration between them. One group was associated with the tropical forest area and the other group was associated with a mainly coastal distribution. This correlation was also observed when from other regions of Mexico and Central America were analyzed.

Loading

Article metrics loading...

/content/journals/10.4269/ajtmh.2008.78.472
2008-03-01
2017-09-22
Loading full text...

Full text loading...

/deliver/fulltext/14761645/78/3/0780472.html?itemId=/content/journals/10.4269/ajtmh.2008.78.472&mimeType=html&fmt=ahah

References

  1. World Health Organization, 1991. Control of Chagas disease. World Health Organ Tech Rep Ser 811 : 1–95.
  2. Schofield CJ, Janin J, Salvatella R, 2006. The future of Chagas disease control. Trends Parasitol 22 : 583–588.
  3. World Health Organization, 2002. Control of Chagas disease. World Health Organ Tech Rep 905 : 1–106.
  4. Velasco-Castrejó n O, Guzmán-Bracho C, Cruz-Rodrí guez J, Omar-López O, González-Domínguez F, 1991. La enfermedad de Chagas en México. Una revisión sucinta y parcial de lo que ocurre en México y el mundo. Publicación Técnica del INDRE 8 : 34–35.
  5. Flores A, Magallón-Gastelum E, Bosseno MF, Ordoñez R, Lo-zano Kasten F, Espinoza B, Ramsey J, Breniere F, 2001. Isoenzyme variability of five principal triatomine vector species of Chagas disease in Mexico. Infect Genet Evol 1 : 21–28.
  6. Dumontiel E, Gourbiere S, Barrera-Perez M, Rodriguez-Felix E, Ruiz-Piña H, Baños-Lopez O, Ramirez-Sierra MJ, Menu F, Rabinovich JE, 2002. Geographic distribution of Triatoma dimidiata and transmission dynamics of Trypanosoma cruzi in the Yucatan peninsula of Mexico. Am J Trop Med Hyg 67 : 176–183.
  7. Galvao C, Carcavallo R, da Silva Rocha D, Jurberg J, 2003. A checklist of the current valid species of the subfamily Triatominae Jeannel, 1919 (Hemiptera, Reduviidae) and their geographical distribution, with nomenclatural and taxonomic notes. Zootaxa 202 : 1–36.
  8. Guzmán-Bracho C, 2001. Epidemiology of Chagas disease in Mexico: and update. Trends Parasitol 17 : 372–376.
  9. Vidal-Acosta V, Ibáñez-Bernal S, Martínez-Campos C, 2000. Infección natural de chinches Triatominae con Trypanosoma cruzi asociadas a la vivienda humana en México. Salud Publica Mex 42 : 496–503.
  10. Guzmán-Marín ES, Barrera-Pérez MA, Rodríguez-Félix ME, Es-cobedo-Ortegón FJ, Zavala-Velázquez JE, 1991. Indices entomológicos de Triatoma dimidiata en el estado de Yucatán. Rev Biomed 2 : 20–29.
  11. González-Angulo W, Ryckman RE, 1967. Epizootiology of Trypanosoma cruzi in southwestern North America. J Med Entomol 4 : 44–47.
  12. Usinger R, 1944. The Triatominae of North and Central America and the West Indies and their public health significance. Publ Health Bull 288 : 1–83.
  13. Lent H, Wygodzinsky P, 1979. Revision of Triatominae (Hemiptera: Reduviidae), and their significance as a vector of Chagas disease. Bull Am Mus Nat Hist 163 : 123–520.
  14. Marcilla A, Bargues MD, Ramsey JM, Magallon-Gastelum E, Salazar-Schettino PM, Abad-Franch F, Dujardin JP, Schofield CJ, Mas-Coma S, 2001. The ITS-2 of the nuclear rDNA as a molecular marker for populations, species, and phylogenetic relationships in Triatominae (Hemiptera: Reduviidae), vectors of Chagas disease. Mol Phylogenet Evol 18 : 136–142.
  15. Monteiro FA, Escalante AA, Beard B, 2001. Molecular tools and triatomine systematics: a public health perspective. Trends Parasitol 17 : 344–347.
  16. Martínez FH, Villalobos GC, Cevallos AM, De la Torre P, Laclette JP, Alejandre-Aguilar R, Espinoza B, 2006. Taxonomic study of the Phyllosoma complex and other triatomine (Insecta: Hemiptera: Reduviidae) species of epidemiological importance in the transmission of Chagas disease: Using ITS-2 and mtCytB sequences. Mol Phylogenet Evol 41 : 279–287.
  17. Instituto Nacional de Estadística Geografía e Informática, 2000. Marco Geoestadístico. Mexico.
  18. Schofield CJ, 1994. Triatominae. Biologá y Control. London: Eurocomunica Publications, 47–48.
  19. Sambrook J, Fritsch EF, Maniatis T, 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  20. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG, 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24 : 4876–4882.
  21. Kumar S, Tamura K, Nei M, 1993. MEGA: Molecular Evolutionary Genetics Analysis. University Park, PA: Pennsylvania State University.
  22. Xia X, Xie Z, 2001. DAMBE: data analysis in molecular biology and evolution. J Hered 92 : 371–373.
  23. Kimura M, 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16 : 111–120.
  24. Felsenstein J, 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39 : 783–791.
  25. Swofford L, 2001. PAUP: Phylogenetic Analysis Using Parsimony, Version 4.0b10. Sunderland, MA: Sinauer Associates.
  26. McDonald D, 2004. Molecular Marker Glossary. Available at: http://www.uwyo.edu/dbmcd/molmark/McDGloss.html. Accessed November 28, 2007.
  27. Mantel N, 1967. The detection of disease clustering and generalized regression approach. Cancer Res 27 : 209–220.
  28. Rohlf JF, 1998. Numerical Taxonomy and Multivariate Analysis System. Version 2.0. Setauket, NY: Exeter Software.
  29. Schaneider S, Roessli D, Excpffre L, 2000 ARLEQUIN Version 2.000. Software for Population Genetics Data Analysis. Geneva: University of Geneva.
  30. Raymond M, Rousset F, 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86 : 248–249.
  31. Clement M, Posada D, Crandall KA, 2000. TCS: a computer program to estimate gene genealogies. Mol Ecol 9 : 1657–1659.
  32. Templeton AR, Sing CF, 1993. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. IV. Nested analyses with cladogram uncertainty and recombination. Genetics 134 : 659–669.
  33. Templeton AR, Routman E, Phillips CA, 1995. Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum. Genetics 140 : 767–782.
  34. Crandall KA, Templeton AR, Sing CF, 1994. Intraspecific phylogenies: problems and solutions. Scotland RW, Seibert DJ, Williams DM, eds. Models in Phylogeny Reconstruction. Oxford, United Kingdom: Oxford University Press, 273–297.
  35. Castelloe J, Templeton AR, 1994. Root probabilities for intraspecific gene trees under neutral coalescent theory. Mol Phylogenet Evol 3 : 102–113.
  36. Dorn PL, Monroy C, Curtis A, 2007. Triatoma dimidiata (Latreille, 1811): a review of its diversity across its geographic range and the relationships among populations. Infect Genet Evol 7 : 343–352.
  37. Marcilla A, Bargues MD, Abad-Franch F, Panzera F, Carcavallo RU, Noireau F, Galvao C, Jurberg J, Miles MA, Dujardin JP, Mas-Coma S, 2002. Nuclear rDNA ITS-2 sequences reveal polyphyly of Panstrongylus species (Hemiptera: Reduviidae: Triatominae), vectors of Trypanosoma cruzi. Infect Genet Evol 1 : 225–235.
  38. Dover G, 1982. Molecular drive: a cohesive mode of species evolution. Nature 299 : 111–117.
  39. Jaramillo C, Montaña MF, Castro LR, Vallejo GA, Guhl F, 2001. Differentiation and genetic analysis of Rhodnius prolixus and Rhodnius colombiensis by rDNA and RAPD amplification. Mem Inst Oswaldo Cruz 96 : 1043–1048.
  40. Martinez F, Alejandre-Aguilar R, Hortelano-Moncada Y, Espinoza B, 2005. Molecular taxonomic study of Chagas disease vectors from the Phyllosoma, Lecticularia, and Rubrofasciata complexes. Am J Trop Med Hyg 73 : 321–325.
  41. Calderon C, Dorn PL, Melgar S, Chávez J, Rodas A, Rosales R, Monroy C, 2004. A preliminary assessment of genetic differentiation of Triatoma dimidiata (Hemiptera: Reduviidae) in Guatemala by random amplification of polymorphic DNA-polymerase chain reaction. J Med Entomol 41 : 882–887.
  42. Panzera F, Ferrandis I, Ramsey J, Ordoñez R, Salazar-Schettino PM, Cabrera M, Monroy MC, Bargues MD, Mas-Comas S, O’Connor JE, Angulo VM, Jaramillo N, Cordón-Rosales C, Gómez D, Pérez R, 2006. Chromosomal variation and genome size support existence of cryptic species of Triatoma dimidiata with different epidemiological importance as Chagas disease vectors. Trop Med Int Health 11 : 1092–1103.
  43. Lehmann P, Ordoñez R, Ojeda-Baranda, Mendez de Lira J, Hidalgo-Sosa L, Monroy C, Ramsey JM, 2005. Morphometrc analysis of Triatoma dimidiata populations (Reduviidae: Triatominae) from Mexico and northern Guatemala. Mem Inst Oswaldo Cruz 100 : 477–482.
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.2008.78.472
Loading
/content/journals/10.4269/ajtmh.2008.78.472
Loading

Data & Media loading...

  • Received : 14 Mar 2007
  • Accepted : 06 Dec 2007

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error