Volume 78, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Appraisal of the present and future impact of climate change and climate variability on the transmission of infectious diseases is a complex but pressing public health issue. We developed a biology-driven model to assess the potential impact of rising temperature on the transmission of schistosomiasis in China. We found a temperature threshold of 15.4°C for development of within the intermediate host snail (i.e., ), and a temperature of 5.8°C at which half the snail sample investigated was in hibernation. Historical data suggest that the occurrence of is restricted to areas where the mean January temperature is above 0°C. The combination of these temperature thresholds, together with our own predicted temperature increases in China of 0.9°C in 2030 and 1.6°C in 2050 facilitated predictive risk mapping. We forecast an expansion of schistosomiasis transmission into currently non-endemic areas in the north, with an additional risk area of 783,883 km by 2050, translating to 8.1% of the surface area of China. Our results call for rigorous monitoring and surveillance of schistosomiasis in a future warmer China.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Haines A, Patz JA, 2004. Health effects of climate change. JAMA 291 : 99–103. [Google Scholar]
  2. Sutherst RW, 2004. Global change and human vulnerability to vector-borne diseases. Clin Microbiol Rev 17 : 136–173. [Google Scholar]
  3. Patz JA, Campbell-Lendrum D, Holloway T, Foley JA, 2005. Impact of regional climate change on human health. Nature 438 : 310–317. [Google Scholar]
  4. Haines A, Kovats RS, Campbell-Lendrum D, Corvalan C, 2006. Climate change and human health: impacts, vulnerability, and mitigation. Lancet 367 : 2101–2109. [Google Scholar]
  5. McMichael AJ, Woodruff RE, Hales S, 2006. Climate change and human health: present and future risks. Lancet 367 : 859–869. [Google Scholar]
  6. IPCC, 2001. Climate Change 2001: The Scientific Basis. Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
  7. Murphy JM, Sexton DMH, Barnett DN, Jones GS, Webb MJ, Collins M, Stainforth DA, 2004. Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430 : 768–772. [Google Scholar]
  8. Allen MR, Ingram WJ, 2002. Constraints on future changes in climate and the hydrologic cycle. Nature 419 : 224–232. [Google Scholar]
  9. Milly PCD, Dunne KA, Vecchia AV, 2005. Global pattern of trends in streamflow and water availability in a changing climate. Nature 438 : 347–350. [Google Scholar]
  10. Lindsay SW, Martens WJM, 1998. Malaria in the African highlands: past, present and future. Bull World Health Organ 76 : 33–45. [Google Scholar]
  11. Rogers DJ, Randolph SE, 2000. The global spread of malaria in a future, warmer world. Science 289 : 1763–1766. [Google Scholar]
  12. Hay SI, Cox J, Rogers DJ, Randolph SE, Stern DI, Shanks GD, Myers MF, Snow RW, 2002. Climate change and the resurgence of malaria in the East African highlands. Nature 415 : 905–909. [Google Scholar]
  13. Tanser FC, Sharp B, le Sueur D, 2003. Potential effect of climate change on malaria transmission in Africa. Lancet 362 : 1792–1798. [Google Scholar]
  14. Zhou GF, Minakawa N, Githeko AK, Yan GY, 2004. Association between climate variability and malaria epidemics in the East African highlands. Proc Natl Acad Sci USA 101 : 2375–2380. [Google Scholar]
  15. Pascual M, Ahumada JA, Chaves LF, Rodo X, Bouma M, 2006. Malaria resurgence in the East African highlands: temperature trends revisited. Proc Natl Acad Sci USA 103 : 5829–5834. [Google Scholar]
  16. Hales S, de Wet N, Maindonald J, Woodward A, 2002. Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet 360 : 830–834. [Google Scholar]
  17. Martens WJM, Jetten TH, Rotmans J, Niessen LW, 1995. Climate change and vector-borne diseases: a global modeling perspective. Glob Environ Change 5 : 195–209. [Google Scholar]
  18. Martens WJM, Jetten TH, Focks DA, 1997. Sensitivity of malaria, schistosomiasis and dengue to global warming. Clim Change 35 : 145–156. [Google Scholar]
  19. Morgan JAT, Dejong RJ, Snyder SD, Mkoji GM, Loker ES, 2001. Schistosoma mansoni and Biomphalaria: past history and future trends. Parasitology 123 (Suppl.): S211–S228. [Google Scholar]
  20. Utzinger J, Zhou XN, Chen MG, Bergquist R, 2005. Conquering schistosomiasis in China: the long march. Acta Trop 96 : 69–96. [Google Scholar]
  21. Zhou XN, Wang LY, Chen MG, Wu XH, Jiang QW, Chen XY, Zheng J, Utzinger J, 2005. The public health significance and control of schistosomiasis in China—then and now. Acta Trop 96 : 97–105. [Google Scholar]
  22. Liang S, Yang CH, Zhong B, Qiu DC, 2006. Re-emerging schistosomiasis in hilly and mountainous areas of Sichuan, China. Bull World Health Organ 84 : 139–144. [Google Scholar]
  23. Yang GJ, Vounatsou P, Zhou XN, Tanner M, Utzinger J, 2005. A potential impact of climate change and water resource development on the transmission of Schistosoma japonicum in China. Parassitologia 47 : 127–134. [Google Scholar]
  24. Yang GJ, Utzinger J, Sun LP, Hong QB, Vounatsou P, Tanner M, Zhou XN, 2007. Effect of temperature on the development of Schistosoma japonicum within Oncomelania hupensis, and hibernation of O. hupensis. Parasitol Res 100 : 695–700. [Google Scholar]
  25. Qin DH, 2004. Climate Change: Science, Impact and Countermeasure. Beijing: China Meteorological Press.
  26. Mao CP, 1990. Biology of Schistosome and Control of Schistosomiasis. Beijing: People’s Health Press.
  27. Chatfield C, 1989. The Analysis of Time Series: An Introduction. London: Chapman & Hall.
  28. Abdel-Aal RE, Mangoud AM, 1998. Modeling and forecasting monthly patient volume at a primary health care clinic using univariate time-series analysis. Comput Methods Programs Biomed 56 : 235–247. [Google Scholar]
  29. Yang GJ, Gemperli A, Vounatsou P, Tanner M, Zhou XN, Utzinger J, 2006. A growing degree-days based time-series analysis for prediction of Schistosoma japonicum transmission in Jiangsu province, China. Am J Trop Med Hyg 75 : 549–555. [Google Scholar]
  30. Hurvich CM, Tsai CL, 1995. Model selection for extended quasi-likelihood models in small samples. Biometrics 51 : 1077–1084. [Google Scholar]
  31. Chen Z, Zhou XN, Yang K, Wang XH, Yao ZQ, Wang TP, Yang GJ, Yang YJ, Zhang SQ, Wang J, Jia TW, Wu XH, 2007. Strategy formulation for schistosomiasis japonica control in different environmental settings supported by spatial analysis: a case study from China. Geospatial Health 1 : 223–231. [Google Scholar]
  32. Shrout PE, 1998. Measurement reliability and agreement in psychiatry. Stat Methods Med Res 7 : 301–317. [Google Scholar]
  33. Wang LD, 2006. The Epidemic Status of Schistosomiasis in China: Results from the Third Nationwide Sampling Survey in 2004. Shanghai: Shanghai Scientific and Technological Literature Publishing House.
  34. Yang GJ, Vounatsou P, Zhou XN, Tanner M, Utzinger J, 2005. A Bayesian-based approach for spatio-temporal modeling of county level prevalence of Schistosoma japonicum infection in Jiangsu province, China. Int J Parasitol 35 : 155–162. [Google Scholar]
  35. Fenwick A, Rollinson D, Southgate V, 2006. Implementation of human schistosomiasis control: challenges and prospects. Adv Parasitol 61 : 567–622. [Google Scholar]
  36. Xu XJ, Wei FH, Yang XX, Dai YH, Yu GY, Chen LY, Su ZM, 2000. Possible effects of the Three Gorges dam on the transmission of Schistosoma japonicum on the Jiang Han plain, China. Ann Trop Med Parasitol 94 : 333–341. [Google Scholar]
  37. Zhou XN, Lin DD, Yang HM, Chen HG, Sun LP, Yang GJ, Hong QB, Brown L, Malone JB, 2002. Use of Landsat TM satellite surveillance data to measure the impact of the 1998 flood on snail intermediate host dispersal in the lower Yangtze River basin. Acta Trop 82 : 199–205. [Google Scholar]
  38. Banister J, Zhang XB, 2005. China, economic development and mortality decline. World Dev 33 : 21–41. [Google Scholar]
  39. Yang GJ, Vounatsou P, Tanner M, Zhou XN, Utzinger J, 2006. Remote sensing for predicting potential habitats of Oncomelania hupensis in Hongze, Baima and Gaoyou lakes in Jiangsu province, China. Geospatial Health 1 : 85–92. [Google Scholar]
  40. Stone R, Jia H, 2006. Going against the flow. Science 313 : 1034–1037. [Google Scholar]
  41. Steinmann P, Keiser J, Bos R, Tanner M, Utzinger J, 2006. Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infect Dis 6 : 411–425. [Google Scholar]

Data & Media loading...

  • Received : 21 Apr 2007
  • Accepted : 02 Jul 2007

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error