Volume 78, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Chagas disease is one of the most important diseases in Latin America. Insecticides have been sprayed to control domiciliated vectors. However, some triatomine species are not strictly domiciliated, and the transmission risk posed by immigrants is identified as a major challenge. The design of new control strategies requires disentangling the importance of demography and immigration in vector occurrence inside houses. Using a population dynamics model, we confirmed that dispersal can explain satisfactorily the domestic abundance of in Yucatan, Mexico. A surprisingly low fecundity was also required (no more than one to two female offspring per female per trimester). A wide range of survival probabilities was possible, although the best fit was obtained for a very low immature survival (≤ 0.01/trimester). Our model predicted that domestic populations are not sustainable, and up to 90% of the individuals found in houses are immigrants. We discuss the potential of different strategies to control the transmission of Chagas disease by non-domiciliated vectors.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. World Health Organization, 2005. Report of the Scientific Working Group on Chagas Disease. Buenos Aires, Argentina, 17–20 April 2005.
  2. World Health Organization, 2002. Strategic Direction for Research. Chagas Disease: Disease Burden and Epidemiological Trends. http://www.who.int/tdr/diseases/chagas/direction.html. Accessed February 2007.
  3. Cecere MC, Vasquez-Prokopec GM, Gurtler RE, Kitron U, 2006. Reinfestation sources for Chagas disease vector, Triatoma infestans, Argentina. Emerg Infect Dis 12 : 1096–1102. [Google Scholar]
  4. Dumonteil E, Gourbiere S, Barrera-Perez M, Rodriguez-Felix E, Ruiz-Piña H, Baños-Lopez O, Ramirez-Sierra MJ, Menu F, Rabinovich JE, 2002. Geographic distribution of Triatoma dimidiata and transmission dynamics of Trypanosoma cruzi in the Yucatan peninsula of Mexico. Am J Trop Med Hyg 67 : 176–183. [Google Scholar]
  5. Dumonteil E, Gourbiere S, 2004. Prediction of Triatoma dimidiata vector abundance and infection rate: a risk map for Trypanosoma cruzi natural transmission in the Yucatan peninsula of Mexico. Am J Trop Med Hyg 70 : 514–519. [Google Scholar]
  6. Guzman-Tapia Y, Ramirez-Sierra MJ, Escobedo-Ortegon J, Dumonteil E, 2005. Effect of hurricane Isidore on Triatoma dimidiata distribution and Chagas disease transmission risk in the Yucatan peninsula of Mexico. Am J Trop Med Hyg 73 : 1019–1025. [Google Scholar]
  7. Dumonteil E, Tripet F, Ramirez-Sierra MJ, Payet V, Lanzaro G, Menu F, 2007. Assessment of Triatoma dimidiata dispersal in the Yucatan peninsula of Mexico using morphometry and microsatellite markers. Am J Trop Med Hyg 76 : 930–937. [Google Scholar]
  8. Dumonteil E, Ruiz-Piña H, Rodriguez-Felix E, Barrera-Perez M, Ramirez-Sierra MJ, Rabinovich JE, Menu F, 2004. Reinfestation of houses after intra-domicile insecticide application in the Yucatán peninsula, Mexico. Mem Inst Oswaldo Cruz 99 : 253–256. [Google Scholar]
  9. Caswell H, 2002. Matrix Population Models. Sunderland, MA: Sinauer Associates.
  10. Wilson LS, Strosberg AM, Barrio K, 2005. Cost-effectiveness of Chagas disease interventions in Latin America and the Caribbean: Markov models. Am J Trop Med Hyg 73 : 901–910. [Google Scholar]
  11. Inaba H, Sekine H, 2004. A mathematical model for Chagas disease with infection-age-dependent infectivity. Math Biosci 190 : 39–69. [Google Scholar]
  12. Cohen J, Gürtler RE, 2001. Modeling household transmission of american trypanosomiasis. Science 293 : 694–698. [Google Scholar]
  13. Velasco-Hernandez JX, 1994. A model for Chagas disease involving transmission by vectors and blood transfusion. Theor Popul Biol 46 : 1–31. [Google Scholar]
  14. Rabinovich JE, Himmschoot P, 1990. A population-dynamics simulation model of the main vector of Chagas’ disease transmission Rhodnius prolixus and Triatoma infestans. Ecol. Model. 52 : 249–266. [Google Scholar]
  15. Castañera MB, Aparicio JP, Gürtler RE, 2003. A stage-structured stochastic model of the population dynamics of Triatoma infestans, the main vector of Chagas disease. Ecol Modelling 162 : 33–53. [Google Scholar]
  16. Canals M, Cattan PE, Solis R, Valderas J, 1991. Population effects of fluctuation in fecundity and mortality in Triatoma infestans: simulation using Leslie matrices. Rev Med Chil 119 : 1239–1242. [Google Scholar]
  17. Zeledón R, Guardia V, Zúñiga A, Swartzwelder JC, 1970. Biology and ethology of Triatoma dimidiata (Latreille, 1811). I. Life cycle, amount of blood ingested, resistance to starvation, and size of adults. J Med Entomol 7 : 313–319. [Google Scholar]
  18. Zeledón R, 1981. El Triatoma Dimidiata (Latreille, 1811) y su Relación con la Enfermedad de Chagas. San José, Costa Rica: UNED.
  19. Guzmán-Marín ES, Barrera-Perez MA, Rodriguez-Felix ME, Zavala-Velazquez JE, 1992. Hábitos biológicos de Triatoma dimidiata en el estado de Yucatán, México. Rev Biomed 3 : 125–131. [Google Scholar]
  20. Martinez-Ibarra JA, Miguel-Alvarez A, Arredondo-Jimenez JI, Rodriguez-Lopez MH, 2001. Update on the biology of Triatoma dimidiata Latreille (Hemiptera: Reduviidae) under laboratory conditions. J Am Mosq Control Assoc 17 : 209–210. [Google Scholar]
  21. Chan K, Saltelli A, Tarantola S, 2000. Winding stairs: a sampling tool to compute sensitivity indices. Stat Comput 10 : 187–196. [Google Scholar]
  22. Saltelli A, Tarantola S, Chan KPS, 1999. A quantitative model independent method for global sensitivity analysis of model output. Technometrics 41 : 39–56. [Google Scholar]
  23. Chan K, Tarantola S, Saltelli A, Sobol IM, 2000. Variance-based methods, in Saltelli A, Chan K, Scott M, eds, Sensitivity Analysis. John Wiley & Sons: 167–197.
  24. Zeledón R, Guardia V, Zúñiga A, Swartzwelder JC, 1970. Biology and ethology of Triatoma dimidiata (Latreille, 1811). II. Life span of adults and fecundity and fertility of females. J Med Entomol 7 : 462–469. [Google Scholar]
  25. Dorn PL, Melgar S, Rouzier V, Gutierrez A, Combe C, Rosales R, Rodas A, Kott S, Salvia D, Monroy CM, 2003. The Chagas vector, Triatoma dimidiata (Hemiptera: Reduviidae), is panmictic within and among adjacent villages in Guatemala. J Med Entomol 40 : 436–440. [Google Scholar]
  26. Ramirez CJ, Jaramillo CA, del Pilar Delgado M, Pinto NA, Aguilera G, Guhl F, 2005. Genetic structure of sylvatic, peridomestic and domestic populations of Triatoma dimidiata (Hemiptera: Reduviidae) from an endemic zone of Boyaca, Colombia. Acta Trop 93 : 23–29. [Google Scholar]
  27. Melgar S, Chávez JJ, Landaverde P, Herrera F, Rodas A, Enríquez E, Dorn PL, Monroy C, 2007. The number of families of Triatoma dimidiata in a Guatemalan house. Mem Inst Oswaldo Cruz 102 : 221–223. [Google Scholar]
  28. Panzera F, Ferrandis I, Ramsey J, Ordonez R, Salazar-Schettino PM, Cabrera M, Monroy MC, Bargues MD, Mas-Coma S, O’Connor JE, Angulo VM, Jaramillo N, Cordon-Rosales C, Gomez D, Perez R, 2006. Chromosomal variation and genome size support existence of cryptic species of Triatoma dimidiata with different epidemiological importance as Chagas disease vectors. Trop Med Int Health 11 : 1092–1103. [Google Scholar]
  29. Friend WG, Choy CTH, Cartwight E, 1965. The effect of nutrient intake on the development and the egg production of Rhodnius prolixus Stahl (Hemiptera: Reduviidae). Can J Zool 43 : 891–904. [Google Scholar]
  30. Zárate LG, 1983. The biology and behavior of Triatoma barberi (Hemiptera: Reduviidae) in Mexico. III. Completion of the life cycle, adult longevity, and egg production under optimal feeding conditions. J Med Entomol 20 : 485–497. [Google Scholar]
  31. Costa JM, Jurberg J, Ribeiro de Almeida J, 1986. Estudos bionómicos de Dipetalogaster maximus (Uhler, 1894) (Hemiptera, Triatominae) I. Influencia da dieta sobre ritmo de postura, viabilidad dos ovos, curva de fertilidade e mortalidade das femas. Mem Inst Oswaldo Cruz 81 : 365–380. [Google Scholar]
  32. Aldana E, Lizano E, Valderrama A, 2001. Efecto de la alimentación con sangre humana sobre la fecundidad, fertilidad y ciclo biológico de Rhodnius prolixus (Hemiptera, Reduviidae). Rev Biol Trop 49 : 1–4. [Google Scholar]
  33. Kroeger A, Ordoñez-Gonzalez J, Behrend M, Alvarez G, 1999. Bednet impregnation for Chagas disease control: a new perspective. Trop Med Int Health 4 : 194–198. [Google Scholar]
  34. Herber O, Kroeger A, 2003. Pyrethroid-impregnated curtains for Chagas’ disease control in Venezuela. Acta Trop 88 : 33–38. [Google Scholar]

Data & Media loading...

  • Received : 07 Jun 2007
  • Accepted : 14 Sep 2007

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error