Volume 78, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


A real-time polymerase chain reaction (PCR) test was developed on the basis of the glucose-6-phosphate dehydrogenase locus that enables identification and quantification of parasites. Using two independent pairs of primers in SYBR-Green assays, the test identified etiologic agents of cutaneous leishmaniasis belonging to both subgenera, () and () in the Americas. Furthermore, use of TaqMan probes enables distinction between () or () from the other () species. All assays were negative with DNA of related trypanosomatids, humans, and mice. The parasite burden was estimated by normalizing the number of organisms per total amount of DNA in the sample or per host glyceraldehyde-3-phosphate dehydrogenase copies. The real-time PCR assay for () subgenus showed a good linear correlation with quantification on the basis of a limiting dilution assay in experimentally infected mice. The test successfully identifies and quantifies in human biopsy specimens and represents a new tool to study leishmaniasis.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Ross R, 1903. Further notes on Leishman’s bodies. BMJ 2 : 1401. [Google Scholar]
  2. Ross R, 1903. Note on the bodies recently described by Leishman and Donovan. BMJ 2 : 1261. [Google Scholar]
  3. Lainson R, Shaw JJ, 1987. Evolution, classification and geographical distribution. Peters W, Killick-Kendrick R, eds. The Leishmaniases in Biology and Medicine. London: Academic Press Inc., 1–120.
  4. World Health Organization, 1990. Control of the leishmaniasis. World Health Organ Tech Rep Ser 793 : 1–158. [Google Scholar]
  5. Cupolillo E, Medina-Acosta E, Noyes H, Momen H, Grimaldi G Jr, 2000. A revised classification for Leishmania and Endotrypanum. Parasitol Today 16 : 142–144. [Google Scholar]
  6. Lainson R, Shaw JJ, 1998. New World leishmaniasis: the neotropical Leishmania species. Cox FE, Kreier JP, Wakelin D, eds. Topley and Wilson’s Microbiology and Microbial Infections. London: Auckland: Arnold, 241–266.
  7. Ashford RW, 2000. The leishmaniases as emerging and reemerging zoonoses. Int J Parasitol 30 : 1269–1281. [Google Scholar]
  8. WHO, 2000. The leishmaniases and Leishmania/HIV co-infections. Fact sheet no. 116. Available from http://wwwwhoint/mediacentre/factsheets/fs116/en/>.
  9. Thomaz-Soccol V, Lanotte G, Rioux JA, Pratlong F, Martini-Dumas A, Serres E, 1993. Monophyletic origin of the genus Leishmania Ross, 1903. Ann Parasitol Hum Comp 68 : 107–108. [Google Scholar]
  10. Cupolillo E, Grimaldi G Jr, Momen H, 1994. A general classification of New World Leishmania using numerical zymotaxonomy. Am J Trop Med Hyg 50 : 296–311. [Google Scholar]
  11. Lainson R, Shaw JJ, 1978. Epidemiology and ecology of leishmaniasis in Latin-America. Nature 273 : 595–600. [Google Scholar]
  12. Poulter LW, 1979. The quantification of viable Leishmania enriettii from infected guinea-pig tissues. Clin Exp Immunol 36 : 24–29. [Google Scholar]
  13. Lima HC, Bleyenberg JA, Titus RG, 1997. A simple method for quantifying Leishmania in tissues of infected animals. Parasitol Today 13 : 80–82. [Google Scholar]
  14. Titus RG, Marchand M, Boon T, Louis JA, 1985. A limiting dilution assay for quantifying Leishmania major in tissues of infected mice. Parasite Immunol 7 : 545–555. [Google Scholar]
  15. Hill JO, 1983. Quantitation of Leishmania tropica major by its ability to form distinct colonies on agar-based media. J Parasitol 69 : 1068–1071. [Google Scholar]
  16. Nicolas L, Sidjanski S, Colle JH, Milon G, 2000. Leishmania major reaches distant cutaneous sites where it persists transiently while persisting durably in the primary dermal site and its draining lymph node: a study with laboratory mice. Infect Immun 68 : 6561–6566. [Google Scholar]
  17. Roberts LJ, Foote SJ, Handman E, 2000. A new standard for the assessment of disease progression in murine cutaneous leishmaniasis. Parasite Immunol 22 : 231–237. [Google Scholar]
  18. Higuchi R, Dollinger G, Walsh PS, Griffith R, 1992. Simultaneous amplification and detection of specific DNA sequences. Biotechnology (N Y) 10 : 413–417. [Google Scholar]
  19. Wittwer CT, Herrmann MG, Moss AA, Rasmussen RP, 1997. Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques 22:130–131, 134–138. [Google Scholar]
  20. Gibson UE, Heid CA, Williams PM, 1996. A novel method for real time quantitative RT-PCR. Genome Res 6 : 995–1001. [Google Scholar]
  21. Heid CA, Stevens J, Livak KJ, Williams PM, 1996. Real time quantitative PCR. Genome Res 6 : 986–994. [Google Scholar]
  22. Vet JA, Majithia AR, Marras SA, Tyagi S, Dube S, Poiesz BJ, Kramer FR, 1999. Multiplex detection of four pathogenic retroviruses using molecular beacons. Proc Natl Acad Sci U S A 96 : 6394–6399. [Google Scholar]
  23. Costa JM, Pautas C, Ernault P, Foulet F, Cordonnier C, Bretagne S, 2000. Real-time PCR for diagnosis and follow-up of Toxoplasma reactivation after allogeneic stem cell transplantation using fluorescence resonance energy transfer hybridization probes. J Clin Microbiol 38 : 2929–2932. [Google Scholar]
  24. Reithinger R, Dujardin JC, 2007. Molecular diagnosis of leishmaniasis: current status and future applications. J Clin Microbiol 45 : 21–25. [Google Scholar]
  25. Bretagne S, Durand R, Olivi M, Garin JF, Sulahian A, Rivollet D, Vidaud M, Deniau M, 2001. Real-time PCR as a new tool for quantifying Leishmania infantum in liver in infected mice. Clin Diagn Lab Immunol 8 : 828–831. [Google Scholar]
  26. Wortmann G, Hochberg L, Houng HH, Sweeney C, Zapor M, Aronson N, Weina P, Ockenhouse CF, 2005. Rapid identification of Leishmania complexes by a real-time PCR assay. Am J Trop Med Hyg 73 : 999–1004. [Google Scholar]
  27. Nicolas L, Milon G, Prina E, 2002. Rapid differentiation of Old World Leishmania species by LightCycler polymerase chain reaction and melting curve analysis. J Microbiol Methods 51 : 295–299. [Google Scholar]
  28. Nicolas L, Prina E, Lang T, Milon G, 2002. Real-time PCR for detection and quantitation of Leishmania in mouse tissues. J Clin Microbiol 40 : 1666–1669. [Google Scholar]
  29. Wortmann G, Sweeney C, Houng HS, Aronson N, Stiteler J, Jackson J, Ockenhouse C, 2001. Rapid diagnosis of leishmaniasis by fluorogenic polymerase chain reaction. Am J Trop Med Hyg 65 : 583–587. [Google Scholar]
  30. Schulz A, Mellenthin K, Schonian G, Fleischer B, Drosten C, 2003. Detection, differentiation, and quantitation of pathogenic Leishmania organisms by a fluorescence resonance energy transfer-based real-time PCR assay. J Clin Microbiol 41 : 1529–1535. [Google Scholar]
  31. Foulet F, Botterel F, Buffet P, Morizot G, Rivollet D, Deniau M, Pratlong F, Costa JM, Bretagne S, 2007. Detection and identification of Leishmania species from clinical specimens using real-time PCR assay and sequencing of the cytochrome b gene. J Clin Microbiol 45 : 2110–2115. [Google Scholar]
  32. Bossolasco S, Gaiera G, Olchini D, Gulletta M, Martello L, Bestetti A, Bossi L, Germagnoli L, Lazzarin A, Uberti-Foppa C, Cinque P, 2003. Real-time PCR assay for clinical management of human immunodeficiency virus-infected patients with visceral leishmaniasis. J Clin Microbiol 41 : 5080–5084. [Google Scholar]
  33. Mary C, Faraut F, Lascombe L, Dumon H, 2004. Quantification of Leishmania infantum DNA by a real-time PCR assay with high sensitivity. J Clin Microbiol 42 : 5249–5255. [Google Scholar]
  34. Svobodová M, Votypka J, Nicolas L, Volf P, 2003. Leishmania tropica in the black rat (Rattus rattus): persistence and transmission from asymptomatic host to sand fly vector Phlebotomus sergenti. Microbes Infect 5 : 361–364. [Google Scholar]
  35. Rolão N, Cortes S, Rodrigues OR, Campino L, 2004. Quantification of Leishmania infantum parasites in tissue biopsies by real-time polymerase chain reaction and polymerase chain reaction-enzyme-linked immunosorbent assay. J Parasitol 90 : 1150–1154. [Google Scholar]
  36. Hendricks LD, Wood DE, Hajduk ME, 1978. Haemoflagellates: commercially available liquid media for rapid cultivation. Parasitology 76 : 309–316. [Google Scholar]
  37. Camargo EP, 1964. Growth and differentiation in Trypanosoma cruzi. I. Origin of metacyclic trypanosomes in liquid media. Rev Inst Med Trop Sao Paulo 12 : 93–100. [Google Scholar]
  38. Soong L, Duboise SM, Kima P, McMahon-Pratt D, 1995. Leishmania pifanoi amastigote antigens protect mice against cutaneous leishmaniasis. Infect Immun 63 : 3559–3566. [Google Scholar]
  39. Uliana SR, Affonso MH, Camargo EP, Floeter-Winter LM, 1991. Leishmania: genus identification based on a specific sequence of the 18S ribosomal RNA sequence. Exp Parasitol 72 : 157–163. [Google Scholar]
  40. Castilho TM, Shaw JJ, Floeter-Winter LM, 2003. New PCR assay using glucose-6-phosphate dehydrogenase for identification of Leishmania species. J Clin Microbiol 41 : 540–546. [Google Scholar]
  41. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N, 1985. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230 : 1350–1354. [Google Scholar]
  42. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ, 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25 : 3389–3402. [Google Scholar]
  43. Hall TA, 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41 : 95–98. [Google Scholar]
  44. Thompson JD, Higgins DG, Gibson TJ, 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22 : 4673–4680. [Google Scholar]
  45. Cabot EL, Beckenbach AT, 1989. Simultaneous editing of multiple nucleic acid and protein sequences with ESEE. Comput Appl Biosci 5 : 233–234. [Google Scholar]
  46. Carraro G, Albertin G, Forneris M, Nussdorfer GG, 2005. Similar sequence-free amplification of human glyceraldehyde-3-phosphate dehydrogenase for real time RT-PCR applications. Mol Cell Probes 19 : 181–186. [Google Scholar]
  47. Cupolillo E, Grimaldi G Jr, Momen H, 1995. Discrimination of Leishmania isolates using a limited set of enzymatic loci. Ann Trop Med Parasitol 89 : 17–23. [Google Scholar]
  48. McMahon-Pratt D, David JR, 1981. Monoclonal antibodies that distinguish between New World species of Leishmania. Nature 291 : 581–583. [Google Scholar]
  49. Shaw JJ, Ishikawa EA, Lainson R, 1989. A rapid and sensitive method for the identification of Leishmania with monoclonal antibodies using fluorescein-labelled avidin. Trans R Soc Trop Med Hyg 83 : 783–784. [Google Scholar]
  50. Bray RS, Munford F, 1967. On the maintenance of strains of Leishmania from the Guianas. J Trop Med Hyg 70 : 23–24. [Google Scholar]
  51. Schallig HD, Oskam L, 2002. Molecular biological applications in the diagnosis and control of leishmaniasis and parasite identification. Trop Med Int Health 7 : 641–651. [Google Scholar]
  52. Barker DC, 1987. DNA diagnosis of human leishmaniasis. Parasitol Today 3 : 177–184. [Google Scholar]
  53. de Oliveira CI, Bafica A, Oliveira F, Favali CB, Correa T, Freitas LA, Nascimento E, Costa JM, Barral A, 2003. Clinical utility of polymerase chain reaction-based detection of Leishmania in the diagnosis of American cutaneous leishmaniasis. Clin Infect Dis 37 : e149–e153. [Google Scholar]
  54. Floeter-Winter LM, Shaw JJ, 2004. New horizons in the identification and taxonomy of the Leishmania and the diagnoses of the leishmaniasis: the expansion of molecular techniques. Res Adv in Microbiology 4 : 63–79. [Google Scholar]
  55. Wirth DF, McMahon-Pratt D, 1982. Rapid identification of Leishmania species by specific hybridization of kinetoplast DNA in cutaneous lesions. Proc Natl Acad Sci U S A 79 : 6999–7003. [Google Scholar]
  56. Barker DC, Butcher J, 1983. The use of DNA probes in the identification of leishmanias: discrimination between isolates of the Leishmania mexicana and L. braziliensis complexes. Trans R Soc Trop Med Hyg 77 : 285–297. [Google Scholar]
  57. Rogers WO, Wirth DF, 1987. Kinetoplast DNA minicircles: regions of extensive sequence divergence. Proc Natl Acad Sci U S A 84 : 565–569. [Google Scholar]
  58. Lopez M, Inga R, Cangalaya M, Echevarria J, Llanos-Cuentas A, Orrego C, Arevalo J, 1993. Diagnosis of Leishmania using the polymerase chain reaction: a simplified procedure for field work. Am J Trop Med Hyg 49 : 348–356. [Google Scholar]
  59. de Bruijn MH, Barker DC, 1992. Diagnosis of New World leishmaniasis: specific detection of species of the Leishmania braziliensis complex by amplification of kinetoplast DNA. Acta Trop 52 : 45–58. [Google Scholar]
  60. Rodgers MR, Popper SJ, Wirth DF, 1990. Amplification of kinetoplast DNA as a tool in the detection and diagnosis of Leishmania. Exp Parasitol 71 : 267–275. [Google Scholar]
  61. Uliana SR, Nelson K, Beverley SM, Camargo EP, Floeter-Winter LM, 1994. Discrimination amongst Leishmania by polymerase chain reaction and hybridization with small subunit ribosomal DNA derived oligonucleotides. J Eukaryot Microbiol 41 : 324–330. [Google Scholar]
  62. van Eys GJ, Schoone GJ, Kroon NC, Ebeling SB, 1992. Sequence analysis of small subunit ribosomal RNA genes and its use for detection and identification of Leishmania parasites. Mol Biochem Parasitol 51 : 133–142. [Google Scholar]
  63. Guevara P, Alonso G, da Silveira JF, de Mello M, Scorza JV, Anez N, Ramirez JL, 1992. Identification of new world Leishmania using ribosomal gene spacer probes. Mol Biochem Parasitol 56 : 15–26. [Google Scholar]
  64. Aviles H, Belli A, Armijos R, Monroy FP, Harris E, 1999. PCR detection and identification of Leishmania parasites in clinical specimens in Ecuador: a comparison with classical diagnostic methods. J Parasitol 85 : 181–187. [Google Scholar]
  65. Weigle KA, Labrada LA, Lozano C, Santrich C, Barker DC, 2002. PCR-based diagnosis of acute and chronic cutaneous leishmaniasis caused by Leishmania (Viannia). J Clin Microbiol 40 : 601–606. [Google Scholar]
  66. Smit ML, Giesendorf BA, Heil SG, Vet JA, Trijbels FJ, Blom HJ, 2000. Automated extraction and amplification of DNA from whole blood using a robotic workstation and an integrated thermocycler. Biotechnol Appl Biochem 32 : 121–125. [Google Scholar]
  67. Smit ML, Giesendorf BA, Vet JA, Trijbels FJ, Blom HJ, 2001. Semiautomated DNA mutation analysis using a robotic workstation and molecular beacons. Clin Chem 47 : 739–744. [Google Scholar]
  68. Amato VS, Rabello A, Rotondo-Silva A, Kono A, Maldonado TP, Alves IC, Floeter-Winter LM, Neto VA, Shikanai-Yasuda MA, 2004. Successful treatment of cutaneous leishmaniasis with lipid formulations of amphotericin B in two immunocompromised patients. Acta Trop 92 : 127–132. [Google Scholar]
  69. Blum J, Desjeux P, Schwartz E, Beck B, Hatz C, 2004. Treatment of cutaneous leishmaniasis among travellers. J Antimicrob Chemother 53 : 158–166. [Google Scholar]
  70. Navin TR, Arana BA, Arana FE, Berman JD, Chajon JF, 1992. Placebo-controlled clinical trial of sodium stibogluconate (Pentostam) versus ketoconazole for treating cutaneous leishmaniasis in Guatemala. J Infect Dis 165 : 528–534. [Google Scholar]
  71. Romero GA, Guerra MV, Paes MG, Macedo VO, 2001. Comparison of cutaneous leishmaniasis due to Leishmania (Viannia) braziliensis and L. (V.) guyanensis in Brazil: therapeutic response to meglumine antimoniate. Am J Trop Med Hyg 65 : 456–465. [Google Scholar]
  72. Soto J, Arana BA, Toledo J, Rizzo N, Vega JC, Diaz A, Luz M, Gutierrez P, Arboleda M, Berman JD, Junge K, Engel J, Sindermann H, 2004. Miltefosine for new world cutaneous leishmaniasis. Clin Infect Dis 38 : 1266–1272. [Google Scholar]
  73. Arevalo J, Ramirez L, Adaui V, Zimic M, Tulliano G, Miranda-Verastegui C, Lazo M, Loayza-Muro R, Doncker SD, Maurer A, Chappuis F, Dujardin JC, Llanos-Cuentas AA, 2007. Influence of Leishmania (viannia) species on the response to antimonial treatment in patients with American tegumentary leishmaniasis. J Infect Dis 195 : 1846–1851. [Google Scholar]
  74. Brandão-Filho SP, Brito ME, Carvalho FG, Ishikawa EA, Cupolillo E, Floeter-Winter L, Shaw JJ, 2003. Wild and synanthropic hosts of Leishmania (Viannia) braziliensis in the endemic cutaneous leishmaniasis locality of Amaraji, Pernambuco State, Brazil. Trans R Soc Trop Med Hyg 97 : 291–296. [Google Scholar]

Data & Media loading...

  • Received : 21 Jun 2007
  • Accepted : 17 Oct 2007

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error