Volume 78, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


A real-time polymerase chain reaction (PCR) test was developed on the basis of the glucose-6-phosphate dehydrogenase locus that enables identification and quantification of parasites. Using two independent pairs of primers in SYBR-Green assays, the test identified etiologic agents of cutaneous leishmaniasis belonging to both subgenera, () and () in the Americas. Furthermore, use of TaqMan probes enables distinction between () or () from the other () species. All assays were negative with DNA of related trypanosomatids, humans, and mice. The parasite burden was estimated by normalizing the number of organisms per total amount of DNA in the sample or per host glyceraldehyde-3-phosphate dehydrogenase copies. The real-time PCR assay for () subgenus showed a good linear correlation with quantification on the basis of a limiting dilution assay in experimentally infected mice. The test successfully identifies and quantifies in human biopsy specimens and represents a new tool to study leishmaniasis.


Article metrics loading...

Loading full text...

Full text loading...



  1. Ross R, 1903. Further notes on Leishman’s bodies. BMJ 2 : 1401.
  2. Ross R, 1903. Note on the bodies recently described by Leishman and Donovan. BMJ 2 : 1261.
  3. Lainson R, Shaw JJ, 1987. Evolution, classification and geographical distribution. Peters W, Killick-Kendrick R, eds. The Leishmaniases in Biology and Medicine. London: Academic Press Inc., 1–120.
  4. World Health Organization, 1990. Control of the leishmaniasis. World Health Organ Tech Rep Ser 793 : 1–158.
  5. Cupolillo E, Medina-Acosta E, Noyes H, Momen H, Grimaldi G Jr, 2000. A revised classification for Leishmania and Endotrypanum. Parasitol Today 16 : 142–144.
  6. Lainson R, Shaw JJ, 1998. New World leishmaniasis: the neotropical Leishmania species. Cox FE, Kreier JP, Wakelin D, eds. Topley and Wilson’s Microbiology and Microbial Infections. London: Auckland: Arnold, 241–266.
  7. Ashford RW, 2000. The leishmaniases as emerging and reemerging zoonoses. Int J Parasitol 30 : 1269–1281.
  8. WHO, 2000. The leishmaniases and Leishmania/HIV co-infections. Fact sheet no. 116. Available from http://wwwwhoint/mediacentre/factsheets/fs116/en/>.
  9. Thomaz-Soccol V, Lanotte G, Rioux JA, Pratlong F, Martini-Dumas A, Serres E, 1993. Monophyletic origin of the genus Leishmania Ross, 1903. Ann Parasitol Hum Comp 68 : 107–108.
  10. Cupolillo E, Grimaldi G Jr, Momen H, 1994. A general classification of New World Leishmania using numerical zymotaxonomy. Am J Trop Med Hyg 50 : 296–311.
  11. Lainson R, Shaw JJ, 1978. Epidemiology and ecology of leishmaniasis in Latin-America. Nature 273 : 595–600.
  12. Poulter LW, 1979. The quantification of viable Leishmania enriettii from infected guinea-pig tissues. Clin Exp Immunol 36 : 24–29.
  13. Lima HC, Bleyenberg JA, Titus RG, 1997. A simple method for quantifying Leishmania in tissues of infected animals. Parasitol Today 13 : 80–82.
  14. Titus RG, Marchand M, Boon T, Louis JA, 1985. A limiting dilution assay for quantifying Leishmania major in tissues of infected mice. Parasite Immunol 7 : 545–555.
  15. Hill JO, 1983. Quantitation of Leishmania tropica major by its ability to form distinct colonies on agar-based media. J Parasitol 69 : 1068–1071.
  16. Nicolas L, Sidjanski S, Colle JH, Milon G, 2000. Leishmania major reaches distant cutaneous sites where it persists transiently while persisting durably in the primary dermal site and its draining lymph node: a study with laboratory mice. Infect Immun 68 : 6561–6566.
  17. Roberts LJ, Foote SJ, Handman E, 2000. A new standard for the assessment of disease progression in murine cutaneous leishmaniasis. Parasite Immunol 22 : 231–237.
  18. Higuchi R, Dollinger G, Walsh PS, Griffith R, 1992. Simultaneous amplification and detection of specific DNA sequences. Biotechnology (N Y) 10 : 413–417.
  19. Wittwer CT, Herrmann MG, Moss AA, Rasmussen RP, 1997. Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques 22:130–131, 134–138.
  20. Gibson UE, Heid CA, Williams PM, 1996. A novel method for real time quantitative RT-PCR. Genome Res 6 : 995–1001.
  21. Heid CA, Stevens J, Livak KJ, Williams PM, 1996. Real time quantitative PCR. Genome Res 6 : 986–994.
  22. Vet JA, Majithia AR, Marras SA, Tyagi S, Dube S, Poiesz BJ, Kramer FR, 1999. Multiplex detection of four pathogenic retroviruses using molecular beacons. Proc Natl Acad Sci U S A 96 : 6394–6399.
  23. Costa JM, Pautas C, Ernault P, Foulet F, Cordonnier C, Bretagne S, 2000. Real-time PCR for diagnosis and follow-up of Toxoplasma reactivation after allogeneic stem cell transplantation using fluorescence resonance energy transfer hybridization probes. J Clin Microbiol 38 : 2929–2932.
  24. Reithinger R, Dujardin JC, 2007. Molecular diagnosis of leishmaniasis: current status and future applications. J Clin Microbiol 45 : 21–25.
  25. Bretagne S, Durand R, Olivi M, Garin JF, Sulahian A, Rivollet D, Vidaud M, Deniau M, 2001. Real-time PCR as a new tool for quantifying Leishmania infantum in liver in infected mice. Clin Diagn Lab Immunol 8 : 828–831.
  26. Wortmann G, Hochberg L, Houng HH, Sweeney C, Zapor M, Aronson N, Weina P, Ockenhouse CF, 2005. Rapid identification of Leishmania complexes by a real-time PCR assay. Am J Trop Med Hyg 73 : 999–1004.
  27. Nicolas L, Milon G, Prina E, 2002. Rapid differentiation of Old World Leishmania species by LightCycler polymerase chain reaction and melting curve analysis. J Microbiol Methods 51 : 295–299.
  28. Nicolas L, Prina E, Lang T, Milon G, 2002. Real-time PCR for detection and quantitation of Leishmania in mouse tissues. J Clin Microbiol 40 : 1666–1669.
  29. Wortmann G, Sweeney C, Houng HS, Aronson N, Stiteler J, Jackson J, Ockenhouse C, 2001. Rapid diagnosis of leishmaniasis by fluorogenic polymerase chain reaction. Am J Trop Med Hyg 65 : 583–587.
  30. Schulz A, Mellenthin K, Schonian G, Fleischer B, Drosten C, 2003. Detection, differentiation, and quantitation of pathogenic Leishmania organisms by a fluorescence resonance energy transfer-based real-time PCR assay. J Clin Microbiol 41 : 1529–1535.
  31. Foulet F, Botterel F, Buffet P, Morizot G, Rivollet D, Deniau M, Pratlong F, Costa JM, Bretagne S, 2007. Detection and identification of Leishmania species from clinical specimens using real-time PCR assay and sequencing of the cytochrome b gene. J Clin Microbiol 45 : 2110–2115.
  32. Bossolasco S, Gaiera G, Olchini D, Gulletta M, Martello L, Bestetti A, Bossi L, Germagnoli L, Lazzarin A, Uberti-Foppa C, Cinque P, 2003. Real-time PCR assay for clinical management of human immunodeficiency virus-infected patients with visceral leishmaniasis. J Clin Microbiol 41 : 5080–5084.
  33. Mary C, Faraut F, Lascombe L, Dumon H, 2004. Quantification of Leishmania infantum DNA by a real-time PCR assay with high sensitivity. J Clin Microbiol 42 : 5249–5255.
  34. Svobodová M, Votypka J, Nicolas L, Volf P, 2003. Leishmania tropica in the black rat (Rattus rattus): persistence and transmission from asymptomatic host to sand fly vector Phlebotomus sergenti. Microbes Infect 5 : 361–364.
  35. Rolão N, Cortes S, Rodrigues OR, Campino L, 2004. Quantification of Leishmania infantum parasites in tissue biopsies by real-time polymerase chain reaction and polymerase chain reaction-enzyme-linked immunosorbent assay. J Parasitol 90 : 1150–1154.
  36. Hendricks LD, Wood DE, Hajduk ME, 1978. Haemoflagellates: commercially available liquid media for rapid cultivation. Parasitology 76 : 309–316.
  37. Camargo EP, 1964. Growth and differentiation in Trypanosoma cruzi. I. Origin of metacyclic trypanosomes in liquid media. Rev Inst Med Trop Sao Paulo 12 : 93–100.
  38. Soong L, Duboise SM, Kima P, McMahon-Pratt D, 1995. Leishmania pifanoi amastigote antigens protect mice against cutaneous leishmaniasis. Infect Immun 63 : 3559–3566.
  39. Uliana SR, Affonso MH, Camargo EP, Floeter-Winter LM, 1991. Leishmania: genus identification based on a specific sequence of the 18S ribosomal RNA sequence. Exp Parasitol 72 : 157–163.
  40. Castilho TM, Shaw JJ, Floeter-Winter LM, 2003. New PCR assay using glucose-6-phosphate dehydrogenase for identification of Leishmania species. J Clin Microbiol 41 : 540–546.
  41. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N, 1985. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230 : 1350–1354.
  42. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ, 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25 : 3389–3402.
  43. Hall TA, 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41 : 95–98.
  44. Thompson JD, Higgins DG, Gibson TJ, 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22 : 4673–4680.
  45. Cabot EL, Beckenbach AT, 1989. Simultaneous editing of multiple nucleic acid and protein sequences with ESEE. Comput Appl Biosci 5 : 233–234.
  46. Carraro G, Albertin G, Forneris M, Nussdorfer GG, 2005. Similar sequence-free amplification of human glyceraldehyde-3-phosphate dehydrogenase for real time RT-PCR applications. Mol Cell Probes 19 : 181–186.
  47. Cupolillo E, Grimaldi G Jr, Momen H, 1995. Discrimination of Leishmania isolates using a limited set of enzymatic loci. Ann Trop Med Parasitol 89 : 17–23.
  48. McMahon-Pratt D, David JR, 1981. Monoclonal antibodies that distinguish between New World species of Leishmania. Nature 291 : 581–583.
  49. Shaw JJ, Ishikawa EA, Lainson R, 1989. A rapid and sensitive method for the identification of Leishmania with monoclonal antibodies using fluorescein-labelled avidin. Trans R Soc Trop Med Hyg 83 : 783–784.
  50. Bray RS, Munford F, 1967. On the maintenance of strains of Leishmania from the Guianas. J Trop Med Hyg 70 : 23–24.
  51. Schallig HD, Oskam L, 2002. Molecular biological applications in the diagnosis and control of leishmaniasis and parasite identification. Trop Med Int Health 7 : 641–651.
  52. Barker DC, 1987. DNA diagnosis of human leishmaniasis. Parasitol Today 3 : 177–184.
  53. de Oliveira CI, Bafica A, Oliveira F, Favali CB, Correa T, Freitas LA, Nascimento E, Costa JM, Barral A, 2003. Clinical utility of polymerase chain reaction-based detection of Leishmania in the diagnosis of American cutaneous leishmaniasis. Clin Infect Dis 37 : e149–e153.
  54. Floeter-Winter LM, Shaw JJ, 2004. New horizons in the identification and taxonomy of the Leishmania and the diagnoses of the leishmaniasis: the expansion of molecular techniques. Res Adv in Microbiology 4 : 63–79.
  55. Wirth DF, McMahon-Pratt D, 1982. Rapid identification of Leishmania species by specific hybridization of kinetoplast DNA in cutaneous lesions. Proc Natl Acad Sci U S A 79 : 6999–7003.
  56. Barker DC, Butcher J, 1983. The use of DNA probes in the identification of leishmanias: discrimination between isolates of the Leishmania mexicana and L. braziliensis complexes. Trans R Soc Trop Med Hyg 77 : 285–297.
  57. Rogers WO, Wirth DF, 1987. Kinetoplast DNA minicircles: regions of extensive sequence divergence. Proc Natl Acad Sci U S A 84 : 565–569.
  58. Lopez M, Inga R, Cangalaya M, Echevarria J, Llanos-Cuentas A, Orrego C, Arevalo J, 1993. Diagnosis of Leishmania using the polymerase chain reaction: a simplified procedure for field work. Am J Trop Med Hyg 49 : 348–356.
  59. de Bruijn MH, Barker DC, 1992. Diagnosis of New World leishmaniasis: specific detection of species of the Leishmania braziliensis complex by amplification of kinetoplast DNA. Acta Trop 52 : 45–58.
  60. Rodgers MR, Popper SJ, Wirth DF, 1990. Amplification of kinetoplast DNA as a tool in the detection and diagnosis of Leishmania. Exp Parasitol 71 : 267–275.
  61. Uliana SR, Nelson K, Beverley SM, Camargo EP, Floeter-Winter LM, 1994. Discrimination amongst Leishmania by polymerase chain reaction and hybridization with small subunit ribosomal DNA derived oligonucleotides. J Eukaryot Microbiol 41 : 324–330.
  62. van Eys GJ, Schoone GJ, Kroon NC, Ebeling SB, 1992. Sequence analysis of small subunit ribosomal RNA genes and its use for detection and identification of Leishmania parasites. Mol Biochem Parasitol 51 : 133–142.
  63. Guevara P, Alonso G, da Silveira JF, de Mello M, Scorza JV, Anez N, Ramirez JL, 1992. Identification of new world Leishmania using ribosomal gene spacer probes. Mol Biochem Parasitol 56 : 15–26.
  64. Aviles H, Belli A, Armijos R, Monroy FP, Harris E, 1999. PCR detection and identification of Leishmania parasites in clinical specimens in Ecuador: a comparison with classical diagnostic methods. J Parasitol 85 : 181–187.
  65. Weigle KA, Labrada LA, Lozano C, Santrich C, Barker DC, 2002. PCR-based diagnosis of acute and chronic cutaneous leishmaniasis caused by Leishmania (Viannia). J Clin Microbiol 40 : 601–606.
  66. Smit ML, Giesendorf BA, Heil SG, Vet JA, Trijbels FJ, Blom HJ, 2000. Automated extraction and amplification of DNA from whole blood using a robotic workstation and an integrated thermocycler. Biotechnol Appl Biochem 32 : 121–125.
  67. Smit ML, Giesendorf BA, Vet JA, Trijbels FJ, Blom HJ, 2001. Semiautomated DNA mutation analysis using a robotic workstation and molecular beacons. Clin Chem 47 : 739–744.
  68. Amato VS, Rabello A, Rotondo-Silva A, Kono A, Maldonado TP, Alves IC, Floeter-Winter LM, Neto VA, Shikanai-Yasuda MA, 2004. Successful treatment of cutaneous leishmaniasis with lipid formulations of amphotericin B in two immunocompromised patients. Acta Trop 92 : 127–132.
  69. Blum J, Desjeux P, Schwartz E, Beck B, Hatz C, 2004. Treatment of cutaneous leishmaniasis among travellers. J Antimicrob Chemother 53 : 158–166.
  70. Navin TR, Arana BA, Arana FE, Berman JD, Chajon JF, 1992. Placebo-controlled clinical trial of sodium stibogluconate (Pentostam) versus ketoconazole for treating cutaneous leishmaniasis in Guatemala. J Infect Dis 165 : 528–534.
  71. Romero GA, Guerra MV, Paes MG, Macedo VO, 2001. Comparison of cutaneous leishmaniasis due to Leishmania (Viannia) braziliensis and L. (V.) guyanensis in Brazil: therapeutic response to meglumine antimoniate. Am J Trop Med Hyg 65 : 456–465.
  72. Soto J, Arana BA, Toledo J, Rizzo N, Vega JC, Diaz A, Luz M, Gutierrez P, Arboleda M, Berman JD, Junge K, Engel J, Sindermann H, 2004. Miltefosine for new world cutaneous leishmaniasis. Clin Infect Dis 38 : 1266–1272.
  73. Arevalo J, Ramirez L, Adaui V, Zimic M, Tulliano G, Miranda-Verastegui C, Lazo M, Loayza-Muro R, Doncker SD, Maurer A, Chappuis F, Dujardin JC, Llanos-Cuentas AA, 2007. Influence of Leishmania (viannia) species on the response to antimonial treatment in patients with American tegumentary leishmaniasis. J Infect Dis 195 : 1846–1851.
  74. Brandão-Filho SP, Brito ME, Carvalho FG, Ishikawa EA, Cupolillo E, Floeter-Winter L, Shaw JJ, 2003. Wild and synanthropic hosts of Leishmania (Viannia) braziliensis in the endemic cutaneous leishmaniasis locality of Amaraji, Pernambuco State, Brazil. Trans R Soc Trop Med Hyg 97 : 291–296.

Data & Media loading...

  • Received : 21 Jun 2007
  • Accepted : 17 Oct 2007

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error