Volume 77, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Antibody responses to malaria invasion ligands and proteins on the merozoite surface have been shown to interfere with red cell invasion and correlate with immunity to malaria. The current study is the first to characterize the antibody responses to EBA-140 and EBA-181, invasion ligands implicated in the alternative pathways of invasion, in age-matched populations of individuals living in endemic areas in both Brazil and Cameroon. Antibody responses to the proteins screened were different between populations. The African individuals reacted strongly with most fragments of these two EBAs, while the majority of the individuals from Mato Grosso, Brazil, reacted weakly and those from the Amazon had elevated responses to these EBA proteins. When compared with the responses against MSP-1 and EBA-175, it appeared that the Brazilian population has a variable ability to recognize invasion ligand proteins and that these responses are distinct from the African population.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI, 2005. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434 : 214–217. [Google Scholar]
  2. Marsh K, 1992. Malaria—a neglected disease? Parasitology 104 (Suppl): S53–S69. [Google Scholar]
  3. Trape JF, Rogier C, Konate L, Diagne N, Bouganali H, Canque B, Legros F, Badji A, Ndiaye G, Ndiaye P, Brahimi K, Ousmane F, Druilhe P, Pereira Da Silva L, 1994. The Dielmo project: a longitudinal study of natural malaria infection and the mechanisms of protective immunity in a community living in a holoendemic area of Senegal. Am J Trop Med Hyg 51 : 123–137. [Google Scholar]
  4. Bouharoun-Tayoun H, Attanath P, Sabchareon A, Chongsuphajaisiddhi T, Druilhe P, 1990. Antibodies that protect humans against Plasmodium falciparum blood stages do not on their own inhibit parasite growth and invasion in vitro, but act in cooperation with monocytes. J Exp Med 172 : 1633–1641. [Google Scholar]
  5. Cohen S, McGregor IA, Carrington S, 1961. Gamma-globulin and acquired immunity to human malaria. Nature 192 : 733–737. [Google Scholar]
  6. Druilhe P, Perignon JL, 1994. Mechanisms of defense against P. falciparum asexual blood stages in humans. Immunol Lett 41 : 115–120. [Google Scholar]
  7. Sabchareon A, Burnouf T, Ouattara D, Attanath P, Bouharoun-Tayoun H, Chantavanich P, Foucault C, Chongsuphajaisiddhi T, Druilhe P, 1991. Parasitologic and clinical human response to immunoglobulin administration in falciparum malaria. Am J Trop Med Hyg 45 : 297–308. [Google Scholar]
  8. Deitsch KW, Hviid L, 2004. Variant surface antigens, virulence genes and the pathogenesis of malaria. Trends Parasitol 20 : 562–566. [Google Scholar]
  9. Mahanty S, Saul A, Miller LH, 2003. Progress in the development of recombinant and synthetic blood-stage malaria vaccines. J Exp Biol 206 : 3781–3788. [Google Scholar]
  10. Miller LH, Hoffman SL, 1998. Research toward vaccines against malaria. Nat Med 4 : 520–524. [Google Scholar]
  11. Binks RH, Conway DJ, 1999. The major allelic dimorphisms in four Plasmodium falciparum merozoite proteins are not associated with alternative pathways of erythrocyte invasion. Mol Biochem Parasitol 103 : 123–127. [Google Scholar]
  12. Dolan SA, Proctor JL, Alling DW, Okubo Y, Wellems TE, Miller LH, 1994. Glycophorin B as an EBA-175 independent Plasmodium falciparum receptor of human erythrocytes. Mol Biochem Parasitol 64 : 55–63. [Google Scholar]
  13. Hadley TJ, Klotz FW, Pasvol G, Haynes JD, McGinniss MH, Okubo Y, Miller LH, 1987. Falciparum malaria parasites invade erythrocytes that lack glycophorin A and B (MkMk). Strain differences indicate receptor heterogeneity and two pathways for invasion. J Clin Invest 80 : 1190–1193. [Google Scholar]
  14. Mitchell GH, Hadley TJ, McGinniss MH, Klotz FW, Miller LH, 1986. Invasion of erythrocytes by Plasmodium falciparum malaria parasites: evidence for receptor heterogeneity and two receptors. Blood 67 : 1519–1521. [Google Scholar]
  15. Perkins ME, Holt EH, 1988. Erythrocyte receptor recognition varies in Plasmodium falciparum isolates. Mol Biochem Parasitol 27 : 23–34. [Google Scholar]
  16. Narum DL, Haynes JD, Fuhrmann S, Moch K, Liang H, Hoffman SL, Sim BK, 2000. Antibodies against the Plasmodium falciparum receptor binding domain of EBA-175 block invasion pathways that do not involve sialic acids. Infect Immun 68 : 1964–1966. [Google Scholar]
  17. Daugherty JR, Murphy CI, Doros-Richert LA, Barbosa A, Kashala LO, Ballou WR, Snellings NJ, Ockenhouse CF, Lanar DE, 1997. Baculovirus-mediated expression of Plasmodium falciparum erythrocyte binding antigen 175 polypeptides and their recognition by human antibodies. Infect Immun 65 : 3631–3637. [Google Scholar]
  18. Orlandi PA, Sim BK, Chulay JD, Haynes JD, 1990. Characterization of the 175-kilodalton erythrocyte binding antigen of Plasmodium falciparum. Mol Biochem Parasitol 40 : 285–294. [Google Scholar]
  19. Sim BK, Orlandi PA, Haynes JD, Klotz FW, Carter JM, Camus D, Zegans ME, Chulay JD, 1990. Primary structure of the 175K Plasmodium falciparum erythrocyte binding antigen and identification of a peptide which elicits antibodies that inhibit malaria merozoite invasion. J Cell Biol 111 : 1877–1884. [Google Scholar]
  20. Toure FS, Deloron P, Migot-Nabias F, 2006. Analysis of human antibodies to erythrocyte binding antigen 175 peptide 4 of Plasmodium falciparum. Clin Med Res 4 : 1–6. [Google Scholar]
  21. Okoyeh JN, Pillai CR, Chitnis CE, 1999. Plasmodium falciparum field isolates commonly use erythrocyte invasion pathways that are independent of sialic acid residues of glycophorin A. Infect Immun 67 : 5784–5791. [Google Scholar]
  22. Lobo CA, de Frazao K, Rodriguez M, Reid M, Zalis M, Lustigman S, 2004. Invasion profiles of Brazilian field isolates of Plasmodium falciparum: phenotypic and genotypic analyses. Infect Immun 72 : 5886–5891. [Google Scholar]
  23. Baum J, Pinder M, Conway DJ, 2003. Erythrocyte invasion phenotypes of Plasmodium falciparum in The Gambia. Infect Immun 71 : 1856–1863. [Google Scholar]
  24. Reed MB, Caruana SR, Batchelor AH, Thompson JK, Crabb BS, Cowman AF, 2000. Targeted disruption of an erythrocyte binding antigen in Plasmodium falciparum is associated with a switch toward a sialic acid-independent pathway of invasion. Proc Natl Acad Sci USA 97 : 7509–7514. [Google Scholar]
  25. Lobo CA, Rodriguez M, Reid M, Lustigman S, 2003. Glycophorin C is the receptor for the Plasmodium falciparum erythrocyte binding ligand PfEBP-2 (baebl). Blood 101 : 4628–4631. [Google Scholar]
  26. Joseph GT, Huima T, Lustigman S, 1998. Characterization of an Onchocerca volvulus L3-specific larval antigen, Ov-ALT-1. Mol Biochem Parasitol 96 : 177–183. [Google Scholar]
  27. Garraud O, Mahanty S, Perraut R, 2003. Malaria-specific antibody subclasses in immune individuals: a key source of information for vaccine design. Trends Immunol 24 : 30–35. [Google Scholar]
  28. Reed ZH, Friede M, Kieny MP, 2006. Malaria vaccine development: progress and challenges. Curr Mol Med 6 : 231–245. [Google Scholar]
  29. Liang H, Sim BK, 1997. Conservation of structure and function of the erythrocyte-binding domain of Plasmodium falciparum EBA-175. Mol Biochem Parasitol 84 : 241–245. [Google Scholar]
  30. al-Yaman F, Genton B, Anders R, Taraika J, Ginny M, Mellor S, Alpers MP, 1995. Assessment of the role of the humoral response to Plasmodium falciparum MSP2 compared to RESA and SPf66 in protecting Papua New Guinean children from clinical malaria. Parasite Immunol 17 : 493–501. [Google Scholar]
  31. al-Yaman F, Genton B, Kramer KJ, Chang SP, Hui GS, Baisor M, Alpers MP, 1996. Assessment of the role of naturally acquired antibody levels to Plasmodium falciparum merozoite surface protein-1 in protecting Papua New Guinean children from malaria morbidity. Am J Trop Med Hyg 54 : 443–448. [Google Scholar]
  32. Wang L, Crouch L, Richie TL, Nhan DH, Coppel RL, 2003. Naturally acquired antibody responses to the components of the Plasmodium falciparum merozoite surface protein 1 complex. Parasite Immunol 25 : 403–412. [Google Scholar]
  33. Wang L, Richie TL, Stowers A, Nhan DH, Coppel RL, 2001. Naturally acquired antibody responses to Plasmodium falciparum merozoite surface protein 4 in a population living in an area of endemicity in Vietnam. Infect Immun 69 : 4390–4397. [Google Scholar]
  34. McGreevy PB, Dietze R, Prata A, Hembree SC, 1989. Effects of immigration on the prevalence of malaria in rural areas of the Amazon basin of Brazil. Mem Inst Oswaldo Cruz 84 : 485–491. [Google Scholar]
  35. Sawyer D, 1993. Economic and social consequences of malaria in new colonization projects in Brazil. Soc Sci Med 37 : 1131–1136. [Google Scholar]
  36. Tauil PL, 1992. Intervention possibilities on the biologic cycle of malaria towards endemism control. Rev Inst Med Trop Sao Paulo 34 (Suppl 9): S21–S23. [Google Scholar]
  37. Bei AK, Membi CD, Rayner JC, Mubi M, Ngasala B, Sultan AA, Premji Z, Duraisingh MT, 2007. Variant merozoite protein expression is associated with erythrocyte invasion phenotypes in Plasmodium falciparum isolates from Tanzania. Mol Biochem Parasitol 153 : 66–71. [Google Scholar]
  38. Ohas EA, Adams JH, Waitumbi JN, Orago AS, Barbosa A, Lanar DE, Stoute JA, 2004. Measurement of antibody levels against region II of the erythrocyte-binding antigen 175 of Plasmodium falciparum in an area of malaria holoendemicity in western Kenya. Infect Immun 72 : 735–741. [Google Scholar]
  39. Okenu DM, Riley EM, Bickle QD, Agomo PU, Barbosa A, Daugherty JR, Lanar DE, Conway DJ, 2000. Analysis of human antibodies to erythrocyte binding antigen 175 of Plasmodium falciparum. Infect Immun 68 : 5559–5566. [Google Scholar]

Data & Media loading...

  • Received : 04 May 2007
  • Accepted : 13 Aug 2007

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error