1921
Volume 77, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Lymphadenopathy is an early clinical sign in cutaneous leishmaniasis (CL), caused by parasites, and may help to understand the initial host response to these species of . We report on characteristics of cells obtained from lymph nodes from cutaneous leishmaniasis patients with lymphadenopathy without ulceration (early phase, = 21) or lymphadenopathy and ulceration (late phase, = 29). Early-phase patients exhibited a higher proportion of neutrophils, eosinophils, and CD8+ T cells. Conversely, CD19+ B lymphocytes and plasma cells were more frequently observed in late-phase patients. The signal for IL-10 was significantly higher in late-phase patients; signals for IFN-γ or IL-4 were similar in both groups. These data reinforce observations of an initial mixed Th1–Th2 profile as well as the early role of the CD8 T cell in cutaneous leishmaniasis. Additionally, there is a chronologic relationship between ulcer development and B-cell increase. IL-10 also increases at a late stage and may be important in limiting tissue damage.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.2007.77.854
2007-11-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/14761645/77/5/0770854.html?itemId=/content/journals/10.4269/ajtmh.2007.77.854&mimeType=html&fmt=ahah

References

  1. Barral A, Barral-Netto M, Almeida R, de Jesus AR, Grimaldi Junior G, Netto EM, Santos I, Bacellar O, Carvalho EM, 1992. Lymphadenopathy associated with Leishmania braziliensis cutaneous infection. Am J Trop Med Hyg 47 : 587–592. [Google Scholar]
  2. Barral A, Guerreiro J, Bomfim G, Correia D, Barral-Netto M, Carvalho EM, 1995. Lymphadenopathy as the first sign of human cutaneous infection by Leishmania braziliensis. Am J Trop Med Hyg 53 : 256–259. [Google Scholar]
  3. Sousa Ade Q, Parise ME, Pompeu MM, Coehlo Filho JM, Vasconcelos IA, Lima JW, Oliveira EG, Vasconcelos AW, David JR, Maguire JH, 1995. Bubonic leishmaniasis: a common manifestation of Leishmania (Viannia) braziliensis infection in Ceara, Brazil. Am J Trop Med Hyg 53 : 380–385. [Google Scholar]
  4. Azadeh B, 1985. “Localized” Leishmania lymphadenitis: a light and electron microscopic study. Am J Trop Med Hyg 34 : 447–455. [Google Scholar]
  5. Berger TG, Meltzer MS, Oster CN, 1985. Lymph node involvement in leishmaniasis. J Am Acad Dermatol 12 : 993–996. [Google Scholar]
  6. al-Gindan Y, Kubba R, el-Hassan AM, Omer AH, Kutty MK, Saeed MB, 1989. Dissemination in cutaneous leishmaniasis. 3. Lymph node involvement. Int J Dermatol 28 : 248–254. [Google Scholar]
  7. Moraes MA, Correia Filho D, Santos JB, 1993. Lymphadenopathies in American cutaneous leishmaniasis: comments on 2 cases. Rev Soc Bras Med Trop 26 : 181–185. [Google Scholar]
  8. Reed SG, Badaro R, Masur H, Carvalho EM, Lorenco R, Lisboa A, Teixeira R, Johnson WD Jr, Jones TC, 1986. Selection of a skin test antigen for American visceral leishmaniasis. Am J Trop Med Hyg 35 : 79–85. [Google Scholar]
  9. Moll H, Fuchs H, Blank C, Rollinghoff M, 1993. Langerhans cells transport Leishmania major from the infected skin to the draining lymph node for presentation to antigen-specific T cells. Eur J Immunol 23 : 1595–1601. [Google Scholar]
  10. Sacks D, Noben-Trauth N, 2002. The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol 2 : 845–858. [Google Scholar]
  11. Nathan CF, Murray HW, Wiebe ME, Rubin BY, 1983. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med 158 : 670–689. [Google Scholar]
  12. Grimaldi G Jr, David JR, McMahon-Pratt D, 1987. Identification and distribution of New World Leishmania species characterized by serodeme analysis using monoclonal antibodies. Am J Trop Med Hyg 36 : 270–287. [Google Scholar]
  13. Jaffe CL, Bennett E, Grimaldi G Jr, McMahon-Pratt D, 1984. Production and characterization of species-specific monoclonal antibodies against Leishmania donovani for immunodiagnosis. J Immunol 133 : 440–447. [Google Scholar]
  14. McMahon-Pratt D, Bennett E, David JR, 1982. Monoclonal antibodies that distinguish subspecies of Leishmania braziliensis. J Immunol 129 : 926–927. [Google Scholar]
  15. Bomfim G, Nascimento C, Costa J, Carvalho EM, Barral-Netto M, Barral A, 1996. Variation of cytokine patterns related to therapeutic response in diffuse cutaneous leishmaniasis. Exp Parasitol 84 : 188–194. [Google Scholar]
  16. Pompeu MM, Brodskyn C, Teixeira MJ, Clarencio J, Van Weyenberg J, Coelho IC, Cardoso SA, Barral A, Barral-Netto M, 2001. Differences in gamma interferon production in vitro predict the pace of the in vivo response to Leishmania amazonensis in healthy volunteers. Infect Immun 69 : 7453–7460. [Google Scholar]
  17. Nathan C, 2006. Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 6 : 173–182. [Google Scholar]
  18. van Zandbergen G, Klinger M, Mueller A, Dannenberg S, Gebert A, Solbach W, Laskay T, 2004. Cutting edge: neutrophil granulocyte serves as a vector for Leishmania entry into macrophages. J Immunol 173 : 6521–6525. [Google Scholar]
  19. Rousseau D, Demartino S, Ferrua B, Michiels JF, Anjuere F, Fragaki K, Le Fichoux Y, Kubar J, 2001. In vivo involvement of polymorphonuclear neutrophils in Leishmania infantum infection. BMC Microbiol 1 : 17. [Google Scholar]
  20. Abadie V, Badell E, Douillard P, Ensergueix D, Leenen PJ, Tanguy M, Fiette L, Saeland S, Gicquel B, Winter N, 2005. Neutrophils rapidly migrate via lymphatics after Mycobacterium bovis BCG intradermal vaccination and shuttle live bacilli to the draining lymph nodes. Blood 106 : 1843–1850. [Google Scholar]
  21. Tvinnereim AR, Hamilton SE, Harty JT, 2004. Neutrophil involvement in cross-priming CD8+ T cell responses to bacterial antigens. J Immunol 173 : 1994–2002. [Google Scholar]
  22. Hill JO, Awwad M, North RJ, 1989. Elimination of CD4+ suppressor T cells from susceptible BALB/c mice releases CD8+ T lymphocytes to mediate protective immunity against Leishmania. J Exp Med 169 : 1819–1827. [Google Scholar]
  23. Milon G, Titus RG, Cerottini JC, Marchal G, Louis JA, 1986. Higher frequency of Leishmania major-specific L3T4+ T cells in susceptible BALB/c as compared with resistant CBA mice. J Immunol 136 : 1467–1471. [Google Scholar]
  24. Smith LE, Rodrigues M, Russell DG, 1991. The interaction between CD8+ cytotoxic T cells and Leishmania-infected macrophages. J Exp Med 174 : 499–505. [Google Scholar]
  25. Muller I, Kropf P, Louis JA, Milon G, 1994. Expansion of gamma interferon-producing CD8+ T cells following secondary infection of mice immune to Leishmania major. Infect Immun 62 : 2575–2581. [Google Scholar]
  26. Huber M, Timms E, Mak TW, Rollinghoff M, Lohoff M, 1998. Effective and long-lasting immunity against the parasite Leishmania major in CD8-deficient mice. Infect Immun 66 : 3968–3970. [Google Scholar]
  27. Overath P, Harbecke D, 1993. Course of Leishmania infection in beta 2-microglobulin-deficient mice. Immunol Lett 37 : 13–17. [Google Scholar]
  28. Wang ZE, Reiner SL, Hatam F, Heinzel FP, Bouvier J, Turck CW, Locksley RM, 1993. Targeted activation of CD8 cells and infection of beta 2-microglobulin-deficient mice fail to confirm a primary protective role for CD8 cells in experimental leishmaniasis. J Immunol 151 : 2077–2086. [Google Scholar]
  29. Da-Cruz AM, Conceicao-Silva F, Bertho AL, Coutinho SG, 1994. Leishmania-reactive CD4+ and CD8+ T cells associated with cure of human cutaneous leishmaniasis. Infect Immun 62 : 2614–2618. [Google Scholar]
  30. Brodskyn CI, Barral A, Boaventura V, Carvalho E, Barral-Netto M, 1997. Parasite-driven in vitro human lymphocyte cytotoxicity against autologous infected macrophages from mucosal leishmaniasis. J Immunol 159 : 4467–4473. [Google Scholar]
  31. Machado P, Kanitakis J, Almeida R, Chalon A, Araujo C, Carvalho EM, 2002. Evidence of in situ cytotoxicity in American cutaneous leishmaniasis. Eur J Dermatol 12 : 449–451. [Google Scholar]
  32. Mengistu G, Akuffo HO, Yemane-Berhan T, Britton S, Fehniger TE, 1990. Serum antibody specificities to Leishmania aethiopica antigens in patients with localized and diffuse cutaneous leishmaniasis. Parasite Immunol 12 : 495–507. [Google Scholar]
  33. Schurr E, Kidane K, Yemaneberhan T, Wunderlich F, 1986. Cutaneous leishmaniasis in Ethiopia: I. Lymphocyte transformation and antibody titre. Trop Med Parasitol 37 : 403–408. [Google Scholar]
  34. Vieira MG, Oliveira F, Arruda S, Bittencourt AL, Barbosa AA Jr, Barral-Netto M, Barral A, 2002. B-cell infiltration and frequency of cytokine producing cells differ between localized and disseminated human cutaneous leishmaniases. Mem Inst Oswaldo Cruz 97 : 979–983. [Google Scholar]
  35. Babai B, Louzir H, Cazenave PA, Dellagi K, 1999. Depletion of peritoneal CD5+ B cells has no effect on the course of Leishmania major infection in susceptible and resistant mice. Clin Exp Immunol 117 : 123–129. [Google Scholar]
  36. Brown DR, Reiner SL, 1999. Polarized helper-T-cell responses against Leishmania major in the absence of B cells. Infect Immun 67 : 266–270. [Google Scholar]
  37. Scott P, Natovitz P, Sher A, 1986. B lymphocytes are required for the generation of T cells that mediate healing of cutaneous leishmaniasis. J Immunol 137 : 1017–1021. [Google Scholar]
  38. Sommer F, Meixner M, Mannherz M, Ogilvie AL, Rollinghoff M, Lohoff M, 1998. Analysis of cytokine patterns produced by individual CD4+ lymph node cells during experimental murine leishmaniasis in resistant and susceptible mice. Int Immunol 10 : 1853–1861. [Google Scholar]
  39. Melby PC, Andrade-Narvaez FJ, Darnell BJ, Valencia-Pacheco G, Tryon VV, Palomo-Cetina A, 1994. Increased expression of proinflammatory cytokines in chronic lesions of human cutaneous leishmaniasis. Infect Immun 62 : 837–842. [Google Scholar]
  40. Anderson CF, Oukka M, Kuchroo VJ, Sacks D, 2007. CD4(+)CD25(-)Foxp3(-) Th1 cells are the source of IL-10-mediated immune suppression in chronic cutaneous leishmaniasis. J Exp Med 204 : 285–297. [Google Scholar]
  41. Faria DR, Gollob KJ, Barbosa J Jr, Schriefer A, Machado PR, Lessa H, Carvalho LP, Romano-Silva MA, de Jesus AR, Carvalho EM, Dutra WO, 2005. Decreased in situ expression of interleukin-10 receptor is correlated with the exacerbated inflammatory and cytotoxic responses observed in mucosal leishmaniasis. Infect Immun 73 : 7853–7859. [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.2007.77.854
Loading
/content/journals/10.4269/ajtmh.2007.77.854
Loading

Data & Media loading...

  • Received : 11 Apr 2007
  • Accepted : 24 Jul 2007

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error