Volume 77, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Two TaqMan-based real-time polymerase chain reaction (PCR) assays devised for the detection of two bovine parasites, and , were evaluated for their diagnostic utility using cultured parasites and 92 field bovine blood samples collected from cattle living in Brazil. The real-time PCR assays were compared with previously established nested-PCR assays. The detection limits of both and –real-time PCR assays were identical at the value of 2.5 parasites/μL of the infected blood. When 92 field bovine blood samples were tested using the real-time assays, positive signals were observed in 30 samples among 31 -positive blood samples in the nested-PCR assay (96.9% sensitivity and 100% specificity), whereas the –real-time PCR assay could detect the parasite from all of 45 -positive blood samples in the nested-PCR assay (100% sensitivity and specificity). The real-time assays using the TaqMan-system can therefore be practically implemented in the epidemiologic survey for bovine babesiosis. Further studies will be necessary to investigate the clinical value of this technique, especially for the quantitative detections of the parasites.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Ristic M, 1981. Babesiosis. Ristic M, MacIntyre I, eds. Diseases of Cattle in the Tropics. The Hague, The Netherlands: Martinus Nijhof Publishers, 443–468.
  2. Kuttler KL, 1998. Worldwide impact of babesiosis. Ristic M, ed. Babesiosis of Animal and Man. Boca Raton, FL: CRC Press, 2–22.
  3. McCosker PJ, 1981. The global importance of babesiosis. Ristic M, Kreier JP, eds. Babesiosis. New York: Academic Press, 1–24.
  4. Bose R, Jorgensen WK, Dalgliesh RJ, Friedhoff KT, De vos AJ, 1995. Current state and future trends in the diagnosis of babesiosis. Vet Parasitol 57 : 61–74. [Google Scholar]
  5. Almeria S, Castella J, Ferrer D, Ortuno A, Estrada-Pena A, Gutierrez JF, 2001. Bovine piroplasms in Minorca (Balearic Islands, Spain): a comparison of PCR-based and light microscopy detection. Vet Parasitol 99 : 249–259. [Google Scholar]
  6. Weiland G, Reiter I, 1988. Methods for serological response to Babesia. Ristic M, ed. Babesiosis of Domestic Animal and Man. Boca Raton, FL: CRC Press, 143–158.
  7. Wagner G, Cruz D, Holman P, Waghela S, Perrone J, Shompole S, Rurangirwa F, 1992. Non-immunologic methods of diagnosis of babesiosis. Mem Inst Oswaldo Cruz 87 (Suppl. III): 193–199. [Google Scholar]
  8. Papadopoulos B, Perie NM, Uilenberg G, 1996. Piroplasms of domestic animals in the Macedonia region of Greece. 1. Serological cross-reactions. Vet Parasitol 63 : 41–56. [Google Scholar]
  9. Passos LMF, Bell-Sakyi L, Brown CGD, 1998. Immunochemical characterization of in vitro culture-derived antigens of Babesia bovis and Babesia bigemina. Vet Parasitol 76 : 239–249. [Google Scholar]
  10. Fahrimal Y, Goff WL, Jasmer DP, 1992. Detection of Babesia bovis carrier cattle by using polymerase chain reaction amplification of parasite DNA. J Clin Microbiol 30 : 1374–1379. [Google Scholar]
  11. Oliveira-Sequeira TCG, Oliveira MCS, Araujo JP Jr, Amarante AFT, 2005. PCR-based detection of Babesia bovis and Babesia bigemina in their natural host Boophilus microplus and cattle. Int J Parasitol 35 : 105–111. [Google Scholar]
  12. Figueroa JV, Chieves LP, Johnson GS, Buening GM, 1992. Detection of Babesia bigemina-infected carriers by polymerase chain reaction amplification. J Clin Microbiol 30 : 2576–2582. [Google Scholar]
  13. Monis PT, Giglio S, Keegan AR, Andrew Thompson RC, 2005. Emerging technologies for the detection and genetic characterization of protozoan parasites. Trends Parasitol 21 : 340–346. [Google Scholar]
  14. Francino O, Altet L, Sanchez-Robert E, Rodriguez A, Solano-Gallego L, Alberola J, Ferrer L, Sanchez A, Roura X, 2006. Advantages of real-time PCR assay for diagnosis and monitoring of canine leishmaniosis. Vet Parasitol 137 : 214–221. [Google Scholar]
  15. Follo MY, Bosi C, Finelli C, Fiume R, Faenza I, Ramazzotti G, Gaboardi GC, Manzoli L, Cocco L, 2006. Real-time PCR as a tool for quantitative analysis of PI-PLCbeta1 gene expression in myelodysplastic syndrome. Int J Mol Med 18 : 267–271. [Google Scholar]
  16. Best EL, Fox AJ, Frost JA, Bolton FJ, 2005. Real-time single-nucleotide polymorphism profiling using Taqman technology for rapid recognition of Campylobacter jejuni clonal complexes. J Med Microbiol 54 : 919–925. [Google Scholar]
  17. Suarez CE, Florin-Christensen M, Hines SA, Palmer GH, Brown WC, McElwain TF, 2000. Characterization of allelic variation in the Babesia bovis merozoite surface antigen 1 (MSA-1) locus and identification of a cross-reactive inhibition-sensitive MSA-1 epitope. Infect Immun 68 : 6865–6870. [Google Scholar]
  18. Hotzel I, Suarez CE, McElwain TF, Palmer GH, 1997. Genetic variation in the dimorphic regions of RAP-1 genes and rap-1 loci of Babesia bigemina. Mol Biochem Parasitol 2 : 479–489. [Google Scholar]
  19. Levi MG, Ristic M, 1980. Babesia bovis: continuous cultivation in a microaerophilus stationary phase culture. Science 207 : 1218–1220. [Google Scholar]
  20. Calder JA, Reddy GR, Chieves L, Courtney CH, Littell R, Livengood JR, Norval RA, Smith C, Dame JB, 1996. Monitoring Babesia bovis infections in cattle by using PCR-based tests. J Clin Microbiol 34 : 2748–2755. [Google Scholar]
  21. Figueroa JV, Chieves LP, Johnson GS, Buening GM, 1993. Multiplex polymerase chain reaction based assay for the detection of Babesia bigemina, Babesia bovis and Anaplasma marginale DNA in bovine blood. Vet Parasitol 50 : 69–81. [Google Scholar]
  22. Friedhoff KT, Smith RD, 1981. Transmission of Babesia by ticks. Ristic M, Kreier JP, eds. Babesiosis. San Diego, CA: Academic Press, 267–321.
  23. Higgins JA, Fayer R, Trout JM, Xiao L, Lal AA, Kerby S, Jenkins MC, 2001. Real-time PCR for the detection of Cryptosporidium parvum. J Microbiol Methods 33 : 323–337. [Google Scholar]
  24. Jeong W, Kweon CH, Kang SW, Paik SG, 2003. Diagnosis and quantification of Theileria sergenti using TaqMan PCR. Vet Parasitol 27 : 287–295. [Google Scholar]
  25. Saunders NA, 2004. Real-Time PCR: An Essential Guide. London: Horizon Bioscience Press.
  26. Price RN, Uhlemann AC, van Vugt M, Brockman A, Hutagalung R, Nair S, Nash D, Singhasivanon P, Anderson TJ, Krishna S, White NJ, Nosten F, 2006. Molecular and pharmacological determinants of the therapeutic response to artemether-lume-fantrine in multidrug-resistant Plasmodium falciparum malaria. Clin Infect Dis 42 : 1570–1577. [Google Scholar]
  27. Rama Iniguez S, Dea-Ayuela MA, Sanchez-Brunete JA, Torrado JJ, Alunda JM, Bolas-Fernandez F, 2006. Real-time reverse transcription-PCR quantification of cytokine mRNA expression in golden Syrian hamster infected with Leishmania infan-tum and treated with a new amphotericin B formulation. Antimicrob Agents Chemother 50 : 1195–1201. [Google Scholar]
  28. Carreno RA, Schnitzler BE, Jeffries AC, Tenter AM, Johnson AM, Barta JR, 1998. Phylogenetic analysis of coccidia based on 18S rDNA sequence comparison indicates that Isospora is most closely related to Toxoplasma and Neospora. J Eukaryot Microbiol 45 : 184–188. [Google Scholar]
  29. Escalante AA, Ayala FJ, 1994. Phylogeny of the malarial genus Plasmodium, derived from rRNA gene sequences. Proc Natl Acad Sci USA 91 : 11373–11377. [Google Scholar]
  30. Hughes AL, Piontkivska H, 2003. Molecular phylogenetics of Trypanosomatidae: contrasting results from 18S rRNA and protein phylogenies. Kinetoplastid Biol Dis 2 : 15. [Google Scholar]

Data & Media loading...

  • Received : 07 May 2007
  • Accepted : 05 Jul 2007

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error