Volume 77, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Glucose-6-phosphate dehydrogenase (G6PD) deficiency is relatively common in populations exposed to malaria. This deficiency appears to provide some protection from this infection, but it can also cause hemolysis after administration of some antimalarial drugs, especially primaquine. The risk of drug-induced G6PD deficiency-related hemolysis depends on a number of factors including the G6PD variant, the drug and drug dosage schedule, patient status, and disease factors. Although a great deal is known about the molecular biology of G6PD, determining the potential for drug-induced hemolysis in the clinical setting is still challenging. This report discusses the potential strategies for assessing drug-induced G6PD deficiency-related hemolytic risk preclinically and in early clinical trials. Additionally, the issues important for conducting larger clinical trials in populations in which G6PD deficiency is prevalent are examined, with a particular focus on antimalarial drug development.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Cordes W, 1926. Experiences with plasmochin in malaria (preliminary reports). Medical Department, Fifteenth Annual Report. Boston: United Fruit Company, 66.
  2. Beutler E, 1980. The red cell: a tiny dynamo. Wintrobe M, ed. Blood Pure and Eloquent. New York: McGraw-Hill, 141.
  3. Dern RJ, Weinstein IM, Leroy GV, Talmage DW, Alving AS, 1954. The hemolytic effect of primaquine. I. The localization of the drug-induced hemolytic defect in primaquine-sensitive individuals. J Lab Clin Med 43 : 303–309. [Google Scholar]
  4. Beutler E, 1957. The glutathione instability of drug-sensitive red cells; a new method for the in vitro detection of drug sensitivity. J Lab Clin Med 49 : 84–95. [Google Scholar]
  5. Carson PE, Flanagan CL, Ickes CE, Alving AS, 1956. Enzymatic deficiency in primaquine-sensitive erythrocytes. Science 124 : 484–485. [Google Scholar]
  6. Beutler E, 1994. G6PD deficiency. Blood 84 : 3613–3636. [Google Scholar]
  7. Beutler E, Dern RJ, Alving AS, 1955. The hemolytic effect of primaquine. VI. An in vitro test for sensitivity of erythrocytes to primaquine. J Lab Clin Med 45 : 40–50. [Google Scholar]
  8. Luzzatto L, 2006. Glucose 6-phosphate dehydrogenase deficiency: from genotype to phenotype. Haematologica 91 : 1303–1306. [Google Scholar]
  9. Pai GS, Sprenkle JA, Do TT, Mareni CE, Migeon BR, 1980. Localization of loci for hypoxanthine phosphoribosyltransferase and glucose-6-phosphate dehydrogenase and biochemical evidence of nonrandom X chromosome expression from studies of a human X-autosome translocation. Proc Natl Acad Sci U S A 77 : 2810–2813. [Google Scholar]
  10. Chen EY, Cheng A, Lee A, Kuang WJ, Hillier L, Green P, Schlessinger D, Ciccodicola A, d’Urso M, 1991. Sequence of human glucose-6-phosphate dehydrogenase cloned in plasmids and a yeast artificial chromosome. Genomics 10 : 792–800. [Google Scholar]
  11. Martini G, Toniolo D, Vulliamy T, Luzzatto L, Dono R, Viglietto G, Paonessa G, d’Urso M, Persico MG, 1986. Structural analysis of the X-linked gene encoding human glucose 6-phosphate dehydrogenase. EMBO J 5 : 1849–1855. [Google Scholar]
  12. Beutler E, Vulliamy TJ, 2002. Hematologically important mutations: glucose-6-phosphate dehydrogenase. Blood Cells Mol Dis 28 : 93–103. [Google Scholar]
  13. Beutler E, Yeh M, Fairbanks VF, 1962. The normal human female as a mosaic of X-chromosome activity: studies using the gene for C-6-PD-deficiency as a marker. Proc Natl Acad Sci U S A 48 : 9–16. [Google Scholar]
  14. Cappadoro M, Giribaldi G, O’Brien E, Turrini F, Mannu F, Ulliers D, Simula G, Luzzatto L, Arese P, 1998. Early phagocytosis of glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes parasitized by Plasmodium falciparum may explain malaria protection in G6PD deficiency. Blood 92 : 2527–2534. [Google Scholar]
  15. Huheey JE, Martin DL, 1975. Malaria, favism and glucose-6-phosphate dehydrogenase deficiency. Experientia 31 : 1145–1147. [Google Scholar]
  16. Ruwende C, Hill A, 1998. Glucose-6-phosphate dehydrogenase deficiency and malaria. J Mol Med 76 : 581–588. [Google Scholar]
  17. Ruwende C, Khoo SC, Snow RW, Yates SN, Kwiatkowski D, Gupta S, Warn P, Allsopp CE, Gilbert SC, Peschu N, 1995. Natural selection of hemi- and heterozygotes for G6PD deficiency in Africa by resistance to severe malaria. Nature 376 : 246–249. [Google Scholar]
  18. Friedman MJ, Trager W, 1981. The biochemistry of resistance to malaria. Sci Am 244 : 158–164. [Google Scholar]
  19. Roth E Jr, Schulman S, 1988. The adaptation of Plasmodium falciparum to oxidative stress in G6PD deficient human erythrocytes. Br J Haematol 70 : 363–367. [Google Scholar]
  20. Badens C, Martinez di Montemuros F, Thuret I, Michel G, Mattei JF, Cappellini MD, Lena-Russo D, 2000. Molecular basis of haemoglobinopathies and G6PD deficiency in the Comorian population. Hematol J 1 : 264–268. [Google Scholar]
  21. Guindo A, Fairhurst R, Doumbo O, Wellems T, Diallo D, 2007. X-linked G6PD deficiency protects hemizygous males but not heterozygous females against severe malaria. PLoS Med 4 : e66. [Google Scholar]
  22. May J, Meyer CG, Grossterlinden L, Ademowo OG, Mockenhaupt FP, Olumese PE, Falusi AG, Luzzatto L, Bienzle U, 2000. Red cell glucose-6-phosphate dehydrogenase status and pyruvate kinase activity in a Nigerian population. Trop Med Int Health 5 : 119–123. [Google Scholar]
  23. de Araujo C, Migot-Nabias F, Guitard J, Pelleau S, Vulliamy T, Ducrocq R, 2006. The role of the G6PD AEth376G/968C allele in glucose-6-phosphate dehydrogenase deficiency in the seerer population of Senegal. Haematologica 91 : 262–263. [Google Scholar]
  24. Louicharoen C, Nuchprayoon I, 2005. G6PD Viangchan (871G>A) is the most common G6PD-deficient variant in the Cambodian population. J Hum Genet 50 : 448–452. [Google Scholar]
  25. Matsuoka H, Nguon C, Kanbe T, Jalloh A, Sato H, Yoshida S, Hirai M, Arai M, Socheat D, Kawamoto F, 2005. Glucose-6-phosphate dehydrogenase (G6PD) mutations in Cambodia: G6PD Viangchan (871G>A) is the most common variant in the Cambodian population. J Hum Genet 50 : 468–472. [Google Scholar]
  26. Yan T, Cai R, Mo O, Zhu D, Ouyang H, Huang L, Zhao M, Huang F, Li L, Liang X, Xu X, 2006. Incidence and complete molecular characterization of glucose-6-phosphate dehydrogenase deficiency in the Guangxi Zhuang autonomous region of southern China: description of four novel mutations. Haematologica 91 : 1321–1328. [Google Scholar]
  27. Iwai K, Hirono A, Matsuoka H, Kawamoto F, Horie T, Lin K, Tantular IS, Dachlan YP, Notopuro H, Hidayah NI, Salim AM, Fujii H, Miwa S, Ishii A, 2001. Distribution of glucose-6-phosphate dehydrogenase mutations in southeast Asia. Hum Genet 108 : 445–449. [Google Scholar]
  28. Ainoon O, Yu YH, Amir Muhriz AL, Boo NY, Cheong SK, Hamidah NH, 2003. Glucose-6-phosphate dehydrogenase (G6PD) variants in Malaysian Malays. Hum Mutat 21 : 101. [Google Scholar]
  29. Nuchprayoon I, Sanpavat S, Nuchprayoon S, 2002. Glucose-6-phosphate dehydrogenase (G6PD) mutations in Thailand: G6PD Viangchan (871G>A) is the most common deficiency variant in the Thai population. Hum Mutat 19 : 185. [Google Scholar]
  30. Laosombat V, Sattayasevana B, Janejindamai W, Viprakasit V, Shirakawa T, Nishiyama K, Matsuo M, 2005. Molecular heterogeneity of glucose-6-phosphate dehydrogenase (G6PD) variants in the south of Thailand and identification of a novel variant (G6PD Songklanagarind). Blood Cells Mol Dis 34 : 191–196. [Google Scholar]
  31. Sukumar S, Mukherjee MB, Colah RB, Mohanty D, 2004. Molecular basis of G6PD deficiency in India. Blood Cells Mol Dis 33 : 141–145. [Google Scholar]
  32. Hamel AR, Cabral IR, Sales TS, Costa FF, Olalla Saad ST, 2002. Molecular heterogeneity of G6PD deficiency in an Amazonian population and description of four new variants. Blood Cells Mol Dis 28 : 399–406. [Google Scholar]
  33. Compri MB, Saad ST, Ramalho AS, 2000. Geneticoepidemiological and molecular investigation of G-6-PD deficiency in a Brazilian community. Cad Saude Publica 16 : 335–342. [Google Scholar]
  34. Arambula E, Aguilar LJ, Vaca G, 2000. Glucose-6-phosphate dehydrogenase mutations and haplotypes in Mexican Mestizos. Blood Cells Mol Dis 26 : 387–394. [Google Scholar]
  35. Noori-Daloii MR, Najafi L, Mohammad Ganji S, Hajebrahimi Z, Sanati MH, 2004. Molecular identification of mutations in G6PD gene in patients with favism in Iran. J Physiol Biochem 60 : 273–277. [Google Scholar]
  36. Daar S, Vulliamy TJ, Kaeda J, Mason PJ, Luzzatto L, 1996. Molecular characterization of G6PD deficiency in Oman. Hum Hered 46 : 172–176. [Google Scholar]
  37. Al-Ali AK, Al-Mustafa ZH, Al-Madan M, Qaw F, Al-Ateeq S, 2002. Molecular characterization of glucose-6-phosphate dehydrogenase deficiency in the Eastern Province of Saudi Arabia. Clin Chem Lab Med 40 : 814–816. [Google Scholar]
  38. Bouanga JC, Mouele R, Prehu C, Wajcman H, Feingold J, Galacteros F, 1998. Glucose-6-phosphate dehydrogenase deficiency and homozygous sickle cell disease in Congo. Hum Hered 48 : 192–197. [Google Scholar]
  39. Duflo B, Diallo A, Toure K, Soula G, 1979. Glucose-6-phosphate dehydrogenase deficiency in Mali. Epidemiology and pathological aspects. Bull Soc Pathol Exot Filiales 72 : 258–264. [Google Scholar]
  40. Davis JC, Clark TD, Kemble SK, Talemwa N, Njama-Meya D, Staedke SG, Dorsey G, 2006. Longitudinal study of urban malaria in a cohort of Ugandan children: description of study site, census and recruitment. Malar J 5 : 18. [Google Scholar]
  41. Migot-Nabias F, Mombo LE, Luty AJ, Dubois B, Nabias R, Bisseye C, Millet P, Lu CY, Deloron P, 2000. Human genetic factors related to susceptibility to mild malaria in Gabon. Genes Immun 1 : 435–441. [Google Scholar]
  42. Mombo LE, Ntoumi F, Bisseye C, Ossari S, Lu CY, Nagel RL, Krishnamoorthy R, 2003. Human genetic polymorphisms and asymptomatic Plasmodium falciparum malaria in Gabonese schoolchildren. Am J Trop Med Hyg 68 : 186–190. [Google Scholar]
  43. Beutler E, Kuhl W, Vives-Corrons JL, Prchal JT, 1989. Molecular heterogeneity of glucose-6-phosphate dehydrogenase A. Blood 74 : 2550–2555. [Google Scholar]
  44. Luzzatto L, 1973. Studies of polymorphic traits for the characterization of populations. African populations south of the Sahara. Isr J Med Sci 9 : 1181–1194. [Google Scholar]
  45. Bhasin M, 2006. Genetics of castes and tribes of India: glucose-6-phosphate dehydrogenase deficiency and abnormal haemoglobins (HbS and HbE). Int J Hum Genet 6 : 49–72. [Google Scholar]
  46. Gupte SC, Shaw AN, Shah KC, 2005. Hematological findings and severity of G6PD deficiency in Vataliya Prajapati subjects. J Assoc Physicians India 53 : 1027–1030. [Google Scholar]
  47. Seth PK, Seth S, 1971. Biogenetical studies of Nagas: glucose-6-phosphate dehydrogenase deficiency in Angami Nagas. Hum Biol 43 : 557–561. [Google Scholar]
  48. Balgir R, Dash B, Murmu B, 2004. Blood groups, hemoglobinopathy and G-6-PD deficiency: investigations among fifteen major scheduled tribes of Orissa, India. Anthropologist 6 : 69–75. [Google Scholar]
  49. Mohanty D, Mukherjee MB, Colah RB, 2004. Glucose-6-phosphate dehydrogenase deficiency in India. Indian J Pediatr 71 : 525–529. [Google Scholar]
  50. Chalvam R, Mukherjee MB, Colah RB, Mohanty D, Ghosh K, 2007. G6PD Namoru (208 T-- C) is the major polymorphic variant in the tribal populations in southern India. Br J Haematol 136 : 512–513. [Google Scholar]
  51. Beutler E, Kuhl W, Ramirez E, Lisker R, 1991. Some Mexican glucose-6-phosphate dehydrogenase variants revisited. Hum Genet 86 : 371–374. [Google Scholar]
  52. Vives Corrons JL, Pujades A, 1982. Heterogeneity of “Mediterranean type” glucose-6-phosphate dehydrogenase (G6PD) deficiency in Spain and description of two new variants associated with favism. Hum Genet 60 : 216–221. [Google Scholar]
  53. Duncan IW, Scott EM, Wright RC, 1974. Gene frequencies of erythrocytic enzymes of Alaskan Eskimos and Athabaskan Indians. Am J Hum Genet 26 : 244–246. [Google Scholar]
  54. Weimer TA, Salzano FM, Westwood B, Beutler E, 1993. Molecular characterization of glucose-6-phosphate dehydrogenase variants from Brazil. Hum Biol 65 : 41–47. [Google Scholar]
  55. Hilmi FA, Al-Allawi NA, Rassam M, Al-Shamma G, Al-Hashimi A, 2002. Red cell glucose-6-phosphate dehydrogenase phenotypes in Iraq. East Mediterr Health J 8 : 42–48. [Google Scholar]
  56. Usanga EA, Ameen R, 2000. Glucose-6-phosphate dehydrogenase deficiency in Kuwait, Syria, Egypt, Iran, Jordan and Lebanon. Hum Hered 50 : 158–161. [Google Scholar]
  57. Samuel AP, Saha N, 1986. Distribution of red cell G6PD and 6PGD phenotypes in Saudi Arabia. Trop Geogr Med 38 : 287–291. [Google Scholar]
  58. el-Hazmi MA, al-Swailem A, Warsy AS, 1995. Glucose-6-phosphate dehydrogenase deficiency and sickle cell genes in Bisha. J Trop Pediatr 41 : 225–229. [Google Scholar]
  59. Turan Y, 2006. Prevalence of erythrocyte glucose-6-phosphate dehydrogenase (G6PD) deficiency in the population of western Turkey. Arch Med Res 37 : 880–882. [Google Scholar]
  60. White JM, Byrne M, Richards R, Buchanan T, Katsoulis E, Weerasingh K, 1986. Red cell genetic abnormalities in Peninsular Arabs: sickle haemoglobin, G6PD deficiency, and alpha and beta thalassaemia. J Med Genet 23 : 245–251. [Google Scholar]
  61. Al-Riyami AA, Suleiman AJ, Afifi M, Al-Lamki ZM, Daar S, 2001. A community-based study of common hereditary blood disorders in Oman. East Mediterr Health J 7 : 1004–1011. [Google Scholar]
  62. Al-Riyami A, Ebrahim GJ, 2003. Genetic Blood Disorders Survey in the Sultanate of Oman. J Trop Pediatr 49 (Suppl 1): i1–20. [Google Scholar]
  63. Kurdi-Haidar B, Mason PJ, Berrebi A, Ankra-Badu G, al-Ali A, Oppenheim A, Luzzatto L, 1990. Origin and spread of the glucose-6-phosphate dehydrogenase variant (G6PD-Mediterranean) in the Middle East. Am J Hum Genet 47 : 1013–1019. [Google Scholar]
  64. Burka E, Weaver Z III, Marks P, 1966. Clinical spectrum of hemolytic anemia associated with glucose 6-phosphate dehydrogenase deficiency. Ann Intern Med 64 : 817–825. [Google Scholar]
  65. Balaka B, Agbere D, Bonkoungou P, Gnamey D, Kessie K, Assimadi K, 2003. Post-hemolytic renal failure in children with glucose-6-phosphate dehydrogenase deficiency at the University Hospital Center in Lome. Med Trop (Mars) 63 : 151–154. [Google Scholar]
  66. Beutler E, 1996. G6PD: population genetics and clinical manifestations. Blood Rev 10 : 45–52. [Google Scholar]
  67. Au SW, Gover S, Lam VM, Adams MJ, 2000. Human glucose-6-phosphate dehydrogenase: the crystal structure reveals a structural NADP(+) molecule and provides insights into enzyme deficiency. Structure 8 : 293–303. [Google Scholar]
  68. Beutler E, 1991. Glucose-6-phosphate dehydrogenase deficiency. N Engl J Med 324 : 169–174. [Google Scholar]
  69. Hirono A, Kuhl W, Gelbart T, Forman L, Fairbanks VF, Beutler E, 1989. Identification of the binding domain for NADP+ of human glucose-6-phosphate dehydrogenase by sequence analysis of mutants. Proc Natl Acad Sci U S A 86 : 10015–10017. [Google Scholar]
  70. Wang XT, Lam VM, Engel PC, 2006. Functional properties of two mutants of human glucose 6-phosphate dehydrogenase, R393G and R393H, corresponding to the clinical variants G6PD Wisconsin and Nashville. Biochim Biophys Acta 1762 : 767–774. [Google Scholar]
  71. Gomez-Gallego F, Garrido-Pertierra A, Mason PJ, Bautista JM, 1996. Unproductive folding of the human G6PD-deficient variant A. FASEB J 10 : 153–158. [Google Scholar]
  72. Beutler E, 1983. Selectivity of proteases as a basis for tissue distribution of enzymes in hereditary deficiencies. Proc Natl Acad Sci U S A 80 : 3767–3768. [Google Scholar]
  73. Vulliamy TJ, d’Urso M, Battistuzzi G, Estrada M, Foulkes NS, Martini G, Calabro V, Poggi V, Giordano R, Town M, 1988. Diverse point mutations in the human glucose-6-phosphate dehydrogenase gene cause enzyme deficiency and mild or severe hemolytic anemia. Proc Natl Acad Sci U S A 85 : 5171–5175. [Google Scholar]
  74. Dern RJ, Beutler E, Alving AS, 1954. The hemolytic effect of primaquine. II. The natural course of the hemolytic anemia and the mechanism of its self-limited character. J Lab Clin Med 44 : 171–176. [Google Scholar]
  75. Beutler E, 2006. Disorders of red cells resulting from enzyme abnormalities. Lichtman M, Beutler E, Kipps T, Seligsohn U, Kaushansky K, Prchal J, eds. Williams Hematology. New York: McGraw-Hill, 603–631.
  76. Beutler E, 2006. Red blood cell enzymopathies. Young NS, Gerson SL, High KA, eds. Clinical Hematology. Philadelphia: Elsevier Inc., 308–314.
  77. Myat Phone K, Myint O, Aung N, Aye Lwin H, 1994. The use of primaquine in malaria infected patients with red cell glucose-6-phosphate dehydrogenase (G6PD) deficiency in Myanmar. Southeast Asian J Trop Med Public Health 25 : 710–713. [Google Scholar]
  78. Buchachart K, Krudsood S, Singhasivanon P, Treeprasertsuk S, Phophak N, Srivilairit S, Chalermrut K, Rattanapong Y, Supeeranuntha L, Wilairatana P, Brittenham G, Looareesuwan S, 2001. Effect of primaquine standard dose (15 mg/day for 14 days) in the treatment of vivax malaria patients in Thailand. Southeast Asian J Trop Med Public Health 32 : 720–726. [Google Scholar]
  79. Alloueche A, Bailey W, Barton S, Bwika J, Chimpeni P, Falade CO, Fehintola FA, Horton J, Jaffar S, Kanyok T, Kremsner PG, Kublin JG, Lang T, Missinou MA, Mkandala C, Oduola AM, Premji Z, Robertson L, Sowunmi A, Ward SA, Winstanley PA, 2004. Comparison of chlorproguanildapsone with sulfadoxine-pyrimethamine for the treatment of uncomplicated falciparum malaria in young African children: double-blind randomised controlled trial. Lancet 363 : 1843–1848. [Google Scholar]
  80. Hirayama K, 2002. Genetic factors associated with development of cerebral malaria and fibrotic schistosomiasis. Korean J Parasitol 40 : 165–172. [Google Scholar]
  81. Ekvall H, Arese P, Turrini F, Ayi K, Mannu F, Premji Z, Bjorkman A, 2001. Acute haemolysis in childhood falciparum malaria. Trans R Soc Trop Med Hyg 95 : 611–617. [Google Scholar]
  82. Lefrancois G, Bouvet E, le Bras J, Vroklans M, Simonneau M, Vachon F, 1982. Anti-erythrocyte autoimmunisation during chronic falciparum malaria. Lancet 1 : 280–281. [Google Scholar]
  83. Ritter K, Kuhlencord A, Thomssen R, Bommer W, 1993. Prolonged haemolytic anaemia in malaria and autoantibodies against triosephosphate isomerase. Lancet 342 : 1333–1334. [Google Scholar]
  84. Abdalla S, Weatherall DJ, 1981. Anti-erythrocyte autoimmunization during chronic falciparum malaria. Lancet 2 : 930–931. [Google Scholar]
  85. Beutler E, Dern RJ, Alving AS, 1954. The hemolytic effect of primaquine. III. A study of primaquine-sensitive erythrocytes. J Lab Clin Med 44 : 177–184. [Google Scholar]
  86. Beutler E, Dern RJ, Flanagan CL, Alving AS, 1955. The hemolytic effect of primaquine. VII. Biochemical studies of drug-sensitive erythrocytes. J Lab Clin Med 45 : 286–295. [Google Scholar]
  87. Szeinberg A, Marks PA, 1961. Substances stimulating glucose catabolism by the oxidative reactions of the pentose phosphate pathway in human erythrocytes. J Clin Invest 40 : 914–924. [Google Scholar]
  88. Welt SI, Jackson EH, Kirkman HN, Parker JC, 1971. The effects of certain drugs on the hexose monophosphate shunt of human red cells. Ann N Y Acad Sci 179 : 625–635. [Google Scholar]
  89. Gaetani GD, Mareni C, Ravazzolo R, Salvidio E, 1976. Haemolytic effect of two sulphonamides evaluated by a new method. Br J Haematol 32 : 183–191. [Google Scholar]
  90. Bloom KE, Brewer GJ, Magon AM, Wetterstroem N, 1983. Microsomal incubation test of potentially hemolytic drugs for glucose-6-phosphate dehydrogenase deficiency. Clin Pharmacol Ther 33 : 403–409. [Google Scholar]
  91. Gaetani G, Salvidio E, Pannacciulli I, Ajmar F, Paravidino G, 1970. Absence of hemolytic effects of L-DOPA on transfused G6PD-deficient erythrocytes. Experientia 26 : 785–786. [Google Scholar]
  92. Ali NA, al-Naama LM, Khalid LO, 1999. Haemolytic potential of three chemotherapeutic agents and aspirin in glucose-6-phosphate dehydrogenase deficiency. East Mediterr Health J 5 : 457–464. [Google Scholar]
  93. Liu TZ, Lin TF, Hung IJ, Wei JS, Chiu DT, 1994. Enhanced susceptibility of erythrocytes deficient in glucose-6-phosphate dehydrogenase to alloxan/glutathione-induced decrease in red cell deformability. Life Sci 55 : PL55–PL60. [Google Scholar]
  94. Degowin RL, Eppes RB, Powell RD, Carson PE, 1966. The haemolytic effects of diaphenylsulfone (DDS) in normal subjects and in those with glucose-6-phosphate-dehydrogenase deficiency. Bull World Health Organ 35 : 165–179. [Google Scholar]
  95. Gurbuz N, Aksu TA, van Noorden CJ, 2005. Biochemical and cytochemical evaluation of heterozygote individuals with glucose-6-phosphate dehydrogenase deficiency. Acta Histochem 107 : 261–267. [Google Scholar]
  96. Diallo DA, Doumbo OK, Plowe CV, Wellems TE, Emanuel EJ, Hurst SA, 2005. Community permission for medical research in developing countries. Clin Infect Dis 41 : 255–259. [Google Scholar]
  97. Beutler E, Blume KG, Kaplan JC, Lohr GW, Ramot B, Valentine WN, 1979. International Committee for Standardization in Haematology: recommended screening test for glucose-6-phosphate dehydrogenase (G-6-PD) deficiency. Br J Haematol 43 : 465–467. [Google Scholar]
  98. Beutler E, Mitchell M, 1968. Special modifications of the fluorescent screening method for glucose-6-phosphate dehydrogenase deficiency. Blood 32 : 816–818. [Google Scholar]
  99. Meissner PE, Coulibaly B, Mandi G, Mansmann U, Witte S, Schiek W, Muller O, Heiner Schirmer R, Mockenhaupt FP, Bienzle U, 2005. Diagnosis of red cell G6PD deficiency in rural Burkina Faso: comparison of a rapid fluorescent enzyme test on filter paper with polymerase chain reaction based genotyping. Br J Haematol 131 : 395–399. [Google Scholar]
  100. Zaffanello M, Rugolotto S, Zamboni G, Gaudino R, Tato L, 2004. Neonatal screening for glucose-6-phosphate dehydrogenase deficiency fails to detect heterozygote females. Eur J Epidemiol 19 : 255–257. [Google Scholar]
  101. Fairbanks VF, Fernandez MN, 1969. The identification of metabolic errors associated with hemolytic anemia. JAMA 208 : 316–320. [Google Scholar]
  102. de Leon J, Susce MT, Murray-Carmichael E, 2006. The Ampli-Chip CYP450 genotyping test: integrating a new clinical tool. Mol Diagn Ther 10 : 135–151. [Google Scholar]
  103. Bang-Ce Y, Hongqiong L, Zhensong L, 2004. Rapid detection of common Chinese glucose-6-phosphate dehydrogenase (G6PD) mutations by microarray-based assay. Am J Hematol 76 : 405–412. [Google Scholar]
  104. Chokshi D, Thera M, Parker M, Diakite M, Makani J, Kwiatkowski DP, Doumbo OK, 2007. Valid consent for genomic epidemiology in developing countries. PLoS Med 4 : e95. [Google Scholar]
  105. Beutler E, Gelbart T, Kuhl W, 1990. Interference of heparin with the polymerase chain reaction. Biotechniques 9 : 166. [Google Scholar]
  106. Chaisomchit S, Wichajarn R, Chowpreecha S, Chareonsiriwatana W, 2003. A simple method for extraction and purification of genomic DNA from dried blood spots on filter paper. Southeast Asian J Trop Med Public Health 34 : 641–645. [Google Scholar]
  107. Chaisomchit S, Wichajarn R, Janejai N, Chareonsiriwatana W, 2005. Stability of genomic DNA in dried blood spots stored on filter paper. Southeast Asian J Trop Med Public Health 36 : 270–273. [Google Scholar]
  108. Lai SK, Yow CM, Benzie IF, 1999. Interference of Hb-H disease in automated reticulocyte counting. Clin Lab Haematol 21 : 261–264. [Google Scholar]
  109. Beutler E, 2006. Preservation and clinical use of erythrocytes and whole blood. Lichtman M, Beutler E, Kipps T, Seligsohn U, Kaushansky K, Prchal J, eds. Williams Hematology. New York: McGraw-Hill, 2159–2173.
  110. Corash L, Spielberg S, Bartsocas C, Boxer L, Steinherz R, Sheetz M, Egan M, Schlessleman J, Schulman JD, 1980. Reduced chronic hemolysis during high-dose vitamin E administration in Mediterranean-type glucose-6-phosphate dehydrogenase deficiency. N Engl J Med 303 : 416–420. [Google Scholar]
  111. al-Rimawi HS, al-Sheyyab M, Batieha A, el-Shanti H, Abuekteish F, 1999. Effect of desferrioxamine in acute haemolytic anaemia of glucose-6-phosphate dehydrogenase deficiency. Acta Haematol 101 : 145–148. [Google Scholar]
  112. Khalifa AS, el-Alfy MS, Mokhtar G, Fakeir AA, Khazbak MA, el-Baz F, el-Kholy M, 1989. Effect of desferrioxamine B on hemolysis in glucose-6-phosphate dehydrogenase deficiency. Acta Haematol 82 : 113–116. [Google Scholar]

Data & Media loading...

  • Received : 01 May 2007
  • Accepted : 17 Jun 2007

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error