Volume 77, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Epidemiologic evidence suggests a preferential association of genotypes TCI and TCII with marsupials and placental mammals, respectively. We identify genotypes from 117 infected mammals. Minicircle DNA amplified by polymerase chain reaction and hybridization with a panel of four specific probes showed frequencies for the genotypes TCI, TCIIb, TCIId, and TCIIe of 38%, 41%, 26%, and 9%, respectively, in wild mammals. In peridomestic mammals, frequencies for the same clones were 29%, 33%, 43%, and 14%, respectively. As a whole, mixed infections are found in more than 31% of the cases, which indicates the coexistence of multiclonal strains circulating in nature, and the absence of specific associations between genotypes and reservoir hosts, including marsupials. The direct characterization of parasite genotypes emphasizes the importance of obtaining unbiased epidemiologic information from parasite-endemic areas. Results are discussed in the context of competition or facilitation of genotypes within hosts.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Paterson S, 2005. No evidence for specificity between host and parasite genotypes in experimental Strongyloides ratti (Nematoda) infections. Int J Parasitol 35 : 1539–1545. [Google Scholar]
  2. Ebert D, 1999. The evolution and expression of parasite virulence. Stearns SC, ed. Evolution in Health and Disease. Oxford, United Kingdom: Oxford University Press, 161–172.
  3. Read AF, Mackinnon MJ, Anwar MA, Taylor LH, 2002. Kin selection models as evolutionary explanations of malaria. Dieckmann U, Metz JA, Sabelis MA, Sigmund K, eds. Adaptive Dynamics of Infectious Disease: In Pursuit of Virulence Management. Cambridge, United Kingdom: Cambridge University Press, 140–153.
  4. de Roode JC, Culleton R, Cheesman SJ, Carter R, Read AF, 2004. Host heterogeneity is a determinant of competitive exclusion or coexistence in genetically diverse malaria infections. Proc Biol Sci 271 : 1073–1080. [Google Scholar]
  5. de Roode JC, Pansini R, Cheesman SJ, Helinski ME, Huijben S, Wargo AR, Bell AS, Chan BH, Walliker D, Read AF, 2005. Virulence and competitive ability in genetically diverse malaria infections. Proc Natl Acad Sci U S A 102 : 7624–7628. [Google Scholar]
  6. Deane LM, 1967. Tripanosomídeos de mamíferos da Região Amazônica IV. Hemoscopia e xenodiagnóstico de animais silvestres da Estrada Belém-Brasília. Rev Inst Med Trop São Paulo 9 : 143–148. [Google Scholar]
  7. Ribeiro R, 1973. Novos reservatórios do Trypanosoma cruzi. Rev Brasil Biol 33 : 429. [Google Scholar]
  8. Telford S, Tonn R, 1982. Dynamics of Trypanosoma cruzi in populations of a primary reservoir, Didelphis marsupialis in the highlands of Venezuela. Bol Ofic Sanit Panam 93 : 341. [Google Scholar]
  9. Barreto MP, 1964. Reservatórios do Trypanosoma cruzi nas Américas. Rev Bras Malar 16 : 527–552. [Google Scholar]
  10. Fernandez CD, Murta SM, Ceravolo IP, Krug LP, Vidigal PG, Steindel M, Nardi N, Romanha AJ, 1997. Characterization of Trypanosoma cruzi strains isolated from chronic chagasic patients, triatomines and opossums naturally infected from the State of Rio Grande do Sul, Brazil. Mem Inst Oswaldo Cruz 92 : 343–351. [Google Scholar]
  11. Briones MR, Souto RP, Stolf BS, Zingales B, 1999. The evolution of two Trypanosoma cruzi subgroups inferred from rRNA genes can be correlated with the interchange of American mammalian faunas in the Cenozoic and has implications to pathogenicity and host specificity. Mol Biochem Parasitol 104 : 219–232. [Google Scholar]
  12. Schenone H, Villarroel F, Rojas A, Alfaro E, 1980. Biological and ecological factors in the epidemiology of Chagas’ disease in Chile. Bol Chil Parasitol 35 : 42–54. [Google Scholar]
  13. Rozas M, Botto-Mahan C, Coronado X, Ortiz S, Cattan PE, Solari A, 2005. Trypanosoma cruzi infection in wild mammals from a chagasic area of Chile. Am J Trop Med Hyg 73 : 517–519. [Google Scholar]
  14. Schofield C, 2000. Trypanosoma cruzi - the vector-parasite paradox. Mem Inst Oswaldo Cruz 95 : 535–544. [Google Scholar]
  15. Legey AP, Pinho AP, Xavier SC, Marchevsky R, Carreira JC, Leon LL, Jansen AM, 2003. Trypanosoma cruzi in marsupial didelphids (Philander frenata and Didelhis marsupialis): differences in the humoral immune response in natural and experimental infections. Rev Soc Bras Med Trop 36 : 241–248. [Google Scholar]
  16. Roque AL, d’Andrea PS, de Andrade GB, Jansen AM, 2005. Trypanosoma cruzi: distinct patterns of infection in the sibling caviomorph rodent species Thrichomys apereoides laurentius and Thrichomys pachyurus (Rodentia, Echimyidae). Exp Parasitol 111 : 37–46. [Google Scholar]
  17. Tibayrenc M, 2003. Genetic subdivisions within Trypanosoma cruzi (discrete typing units) and their relevance for molecular epidemiology and experimental evolution. Kinetoplastid Biol Dis 2 : 12. [Google Scholar]
  18. Anonymous, 1999. Recommendations from a satellite meeting. Mem Inst Oswaldo Cruz 94 : 429–432. [Google Scholar]
  19. Tibayrenc M, 1995. Population genetics and strain typing of microorganisms: how to detect departures from panmixia without individualizing alleles and loci. C R Acad Sci III 318 : 135–139. [Google Scholar]
  20. Brisse S, Dujardin JC, Tibayrenc M, 2000. Identification of six Trypanosoma cruzi genotypes by sequence-characterised amplified region markers. Mol Biochem Parasitol 111 : 95–105. [Google Scholar]
  21. Brisse S, Barnabe C, Tibayrenc M, 2000. Identification of six Trypanosoma cruzi phylogenetic genotypes by random amplified polymorphic DNA and multilocus enzyme electrophoresis. Int J Parasitol 30 : 35–44. [Google Scholar]
  22. Barnabe C, Brisse S, Tibayrenc M, 2000. Population structure and genetic typing of Trypanosoma cruzi, the agent of Chagas disease: a multilocus enzyme electrophoresis approach. Parasitology 120 : 513–526. [Google Scholar]
  23. Brisse S, Verhoef J, Tibayrenc M, 2001. Characterization of large and small subunit rRNA and mini-exon genes further supports the distinction of six Trypanosoma cruzi genotypes. Int J Parasitol 31 : 1218–1226. [Google Scholar]
  24. Mendonça MB, Nehme NS, Santos SS, Cupolillo E, Vargas N, Junqueira A, Naiff RD, Barrett TV, Coura JR, Zingales B, Fernandes O, 2002. Two main clusters within Trypanosoma cruzi zymodeme 3 are defined by distinct regions of the ribosomal RNA cistron. Parasitology 124 : 177–184. [Google Scholar]
  25. Westenberger SJ, Barnabe C, Campbell DA, Sturm NR, 2005. Two hybridization events define the population structure of Trypanosoma cruzi. Genetics 171 : 527–543. [Google Scholar]
  26. de Freitas JM, Augusto-Pinto L, Pimenta JR, Bastos-Rodrigues L, Goncalves VF, Teixeira SM, Chiari E, Junqueira AC, Fernandes O, Macedo AM, Machado CR, Pena SD, 2006. Ancestral genomes, sex, and the population structure of Trypanosoma cruzi. PLoS Pathogens 2 : 226–235. [Google Scholar]
  27. Botto-Mahan C, Cattan PE, Canals M, Acuña M, 2005. Seasonal variation in the home range and host availability of the bloodsucking insect Mepraia spinolai in wild environment. Acta Trop 95 : 160–163. [Google Scholar]
  28. Wincker P, Britto C, Pereira JB, Cardoso MA, Oelemann W, Morel CM, 1994. Use of a simplified polymerase chain reaction procedure to detect Trypanosoma cruzi in blood samples from chronic chagasic patients in a rural endemic area. Am J Trop Med Hyg 51 : 771–777. [Google Scholar]
  29. Solari A, Campillay R, Ortiz S, Wallace A, 2001. Identification of Trypanosoma cruzi genotypes circulating in Chilean chagasic patients. Exp Parasitol 97 : 226–233. [Google Scholar]
  30. Veas F, Breniere SF, Cuny G, Brengues C, Solari A, Tibayrenc M, 1991. General procedure to construct highly specific kDNA probes for clones of Trypanosoma cruzi for sensitive detection by polymerase chain reaction. Cell Mol Biol 37 : 73–84. [Google Scholar]
  31. Breniere SF, Bosseno M-F, Telleria J, Bastrenta B, Yacsik N, Noireau F, Alcazar J-L, Barnabé C, Wincker P, Tibayrenc M, 1998. Different behavior of two Trypanosoma cruzi major clones: transmission and circulation in young Bolivian patients. Exp Parasitol 89 : 285–295. [Google Scholar]
  32. Sokal RR, Rohlf FJ, 1995. Biometry. The Principles and Practice of Statistics in Biological Research. New York: W.H. Freeman & Company.
  33. Gotelli NJ, Entsminger GL, 2006. EcoSim: Null Models Software for Ecology. Version 7. Jericho, VT: Acquired Intelligence Inc. & Kesey-Bear. Available from http://garyentsminger.com/ecosim.htm.
  34. Gotelli NJ, Rohde K, 2002. Co-occurrence of ectoparasites of marine fishes: a null model analysis. Ecol Lett 5 : 86–94. [Google Scholar]
  35. Machado CA, Ayala FJ, 2001. Nucleotide sequences provide evidence of genetic exchange among distantly related genotypes of Trypanosoma cruzi. Proc Natl Acad Sci U S A 98 : 7396–7401. [Google Scholar]
  36. Sturm NR, Vargas NS, Westenberger SJ, Zingales B, Campbell DA, 2003. Evidence for multiple hybrid groups in Trypanosoma cruzi. Int J Parasitol 33 : 269–279. [Google Scholar]
  37. Westenberger SJ, Sturm NR, Campbell DA, 2006. Trypanosoma cruzi 5S rRNA arrays define five groups and indicate the geographic origins of an ancestor of the heterozygous hybrids. Int J Parasitol 36 : 337–346. [Google Scholar]
  38. Yeo M, Acosta N, Llewellyn M, Sanchez H, Adamson S, Miles GA, Lopez E, Gonzalez N, Patterson JS, Gaunt MW, de Arias AR, Miles MA, 2005. Origins of Chagas disease: Didelphis species are natural hosts of Trypanosoma cruzi I and armadillos hosts of Trypanosoma cruzi II, including hybrids. Int J Parasitol 35 : 225–233. [Google Scholar]
  39. Ceballos LA, Cardinal MV, Vazquez-Prokopec GM, Lauricella MA, Orozco MM, Cortinas R, Schijman AG, Levin MJ, Kitron U, Gurtler RE, 2006. Long-term reduction of Trypanosoma cruzi infection in wild mammals following deforestation and sustained vector surveillance in northwestern Argentina. Acta Trop 98 : 286–296. [Google Scholar]
  40. Rojas A, Vinhaes M, Rodriguez M, Monroy J, Persaud N, Aznar C, Naquira C, Hiwat H, Benitez J, 2005. International Meeting on Surveillance and Prevention of the Chagas Disease in the Amazonia: implementation of the Inter-government Initiative Surveillance and Prevention of the Chagas Disease in the Amazonia. Manaus, State of Amazon, Brazil, 19–22 September 2004. Rev Soc Bras Med Trop 38 : 82–89. [Google Scholar]
  41. Clark CG, Pung OJ, 1994. Host specificity of ribosomal DNA variation in wild Trypanosoma cruzi from North America. Mol Biochem Parasitol 66 : 175–179. [Google Scholar]
  42. Pung OJ, Spratt J, Clark CG, Norton TM, Carter J, 1998. Trypanosoma cruzi infection of free-ranging lion-tailed macaques (Macaca silenus) and ring-tailed lemurs (Lemur catta) on St. Catherine’s Island, Georgia, USA. J Zoo Wildl Med 29 : 25–30. [Google Scholar]
  43. Herrera L, d’Andrea PS, Xavier SC, Mangia RH, Fernandes O, Jansen AM, 2005. Trypanosoma cruzi infection in wild mammals of the National Park ‘Serra da Capivara’ and its surroundings (Piaui, Brazil), an area endemic for Chagas disease. Trans R Soc Trop Med Hyg 99 : 379–388. [Google Scholar]
  44. Devera R, Fernandes O, Coura JR, 2003. Should Trypanosoma cruzi be called “cruzi” complex? A review of the parasite diversity and the potential of selecting population after in vitro culturing and mice infection. Mem I Oswaldo Cruz 98 : 1–12. [Google Scholar]
  45. Lord CC, Barnard B, Day K, Hargrove JW, McNamara JJ, Paul RE, Trenholme K, Woolhouse ME, 1999. Aggregation and distribution of strains in microparasites. Philos Trans R Soc Lond B Biol Sci 354 : 799–807. [Google Scholar]
  46. Widmer G, Dvorak JA, Miles MA, 1987. Temperature modulation of growth rates and glucosephosphate isomerase isozyme activity in Trypanosoma cruzi. Mol Biochem Parasitol 23 : 55–62. [Google Scholar]
  47. Finley RW, Dvorak JA, 1987. Trypanosoma cruzi: analysis of the population dynamics of heterogeneous mixtures. J Protozool 34 : 409–415. [Google Scholar]
  48. Coronado X, Zulantay I, Albrecht H, Rozas M, Apt W, Ortiz S, Rodriguez J, Sanchez G, Solari A, 2006. Variation in Trypanosoma cruzi clonal composition detected in blood patients and xenodiagnosis triatomines: implications in the molecular epidemiology of Chile. Am J Trop Med Hyg 74 : 1008–1012. [Google Scholar]
  49. Gurtler RE, Cecere MC, Lauricella MA, Cardinal MV, Kitron U, Cohen JE, 2006. Domestic dogs and cats as sources of Trypanosoma cruzi infection in rural northwestern Argentina. Parasitology 11 : 1–14. [Google Scholar]
  50. Macedo AM, Pena SD, 1998. Genetic Variability of Trypanosoma cruzi: implications for the pathogenesis of Chagas disease. Parasitol Today 14 : 119–124. [Google Scholar]
  51. Vago AR, Andrade LO, Leite AA, d’Avila Reis D, Macedo AM, Adad SJ, Tostes S Jr, Moreira MC, Filho GB, Pena SD, 2000. Genetic characterization of Trypanosoma cruzi directly from tissues of patients with chronic Chagas disease: differential distribution of genetic types into diverse organs. Am J Pathol 156 : 1805–1809. [Google Scholar]
  52. Barnabé C, Neubauer K, Solari A, Tibayrenc M, 2001. Trypanosoma cruzi: presence of the two major phylogenetic lineages and of several lesser discrete typing units (DTUs) in Chile and Paraguay. Acta Trop 78 : 127–137. [Google Scholar]

Data & Media loading...

  • Received : 13 Mar 2007
  • Accepted : 06 Jun 2007

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error