Volume 77, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


In Brazil, resistance to temephos, used since 1967, was detected in several municipalities in 2000. Organophosphates were substituted by pyrethroids against adults and, in some localities, by against larvae. However, high temephos resistance ratios were still detected between 2001 and 2004. Field-simulated assays confirmed a low temephos residual effect. Acethylcholinesterase and Mixed Function Oxidase profiles were not altered. In contrast, higher Esterase activity, studied with three substrates, was found in all examined populations collected in 2001. From 2001 to 2004, a slight reduction in α-Esterase (EST) and β-EST activity together with a gradual increase of p-nitrophenyl acetate (PNPA)-EST was noted. Gluthathione--transferase alteration was encountered only in the northeast region in 2001, spreading the entire country thereafter. In general, except for α-EST and β-EST, only one enzyme class was altered in each mosquito specimen. Data are discussed in the context of historic application of insecticides in Brazil.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Lourenço-de-Oliveira R, Vazeille M, Fillipis AMB, Failloux AB, 2004. Aedes aegypti in Brazil: genetically differentiated populations with high susceptibility to dengue and yellow fever viruses. Trans R Soc Trop Med Hyg 98 : 43–54. [Google Scholar]
  2. Barbosa-da-Silva J Jr, Siqueira JB Jr, Coelho GE, Vilarinhos PT, Pimenta FG Jr, 2002. Dengue in Brazil: current situation and control activities. Epidemiol Bull 23 : 3–6. [Google Scholar]
  3. Schatzmayr HG, Nogueira RMR, Rosa APAT, 1986. An outbreak of dengue virus at Rio de Janeiro. Mem Inst Oswaldo Cruz 81 : 245–246. [Google Scholar]
  4. Dletz VJ, Gubler DJ, Rigau-Pérez JG, Pinheiro F, Schatzmayr HG, Bailey R, Gunn RA, 1990. Epidemic dengue 1 in Brazil, 1986: Evaluation of a clinically based dengue surveillance system. Am J Epidemiol 131 : 693–701. [Google Scholar]
  5. Fundação Nacional de Saúde, 1999. Reunião Técnica Para Discutir Status de Resistência de Aedes aegypti e Definir Estratégias a Serem Implantadas Para Monitoramento da Resistência no Brasil. Brasilia: Ministério da Saúde.
  6. Fundação Nacional de Saúde, 2001. Dengue: Instruções Para Pessoal de Combate ao Vetor: Manual de Normas e Técnicas. 3rd ed. Brasilia: Ministério da Saúde.
  7. Lima JBP, Da-Cunha MP, Silva-Jr RCS, Galardo AKR, Soares SS, Braga IA, Ramos RP, Valle D, 2003. Resistance of Aedes aegypti to organophosphates in several municipalities in the state of Rio de Janeiro and Espírito Santo, Brazil. Am J Trop Med Hyg 68 : 329–333. [Google Scholar]
  8. Braga IA, Lima JBP, Soares SS, Valle D, 2004. Aedes aegypti resistance to temephos during 2001 in several municipalities in the States of Rio de Janeiro, Sergipe and Alagoas, Brazil. Mem Inst Oswaldo Cruz 99 : 199–203. [Google Scholar]
  9. Da-Cunha MP, Lima JBP, Brogdon WG, Moya GE, Valle D, 2005. Monitoring of resistance to the pyrethroid cypermetrin in Brazilian Aedes aegypti (Diptera: Culicidae) populations collected between 2001 and 2003. Mem Inst Oswaldo Cruz 100 : 441–444. [Google Scholar]
  10. Hemingway J, Ranson H, 2000. Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 45 : 371–391. [Google Scholar]
  11. Valle D, Montella IR, Ribeiro RA, Medeiros PFV, Martins-Jr AJ, Lima JBP, 2006. Quantification methodology for enzyme activity related to insecticide resistance in Aedes aegypti. Fundação Oswaldo Cruz and Secretaria de Vigilância em Saúde, Ministério da Saúde. Rio de Janeiro and Distrito Federal.
  12. Brogdon WG, 1989. Biochemical resistance detection: an alternative to bioassay. Parasitol Today 5 : 56–60. [Google Scholar]
  13. Hemingway J, 1998. Techniques to Detect Insecticide Resistance Mechanisms (Field and Laboratory Manual). Geneva: World Health Organization.
  14. Braga IA, Gomes AC, Nelson M, Mello RCG, Bergamaschi DP, Souza JMP, 2000. Comparative study between larval surveys and ovitraps to monitor populations of Aedes aegypti. Rev Soc Bras Med Trop 33 : 347–353. [Google Scholar]
  15. World Health Organization, 1981. Instructions for Determining the Susceptibility or Resistance of Mosquito Larvae to Insecticides. Geneva: World Health Organization.
  16. Secretaria de Vigilância em Saúde/Ministério da Saúde, 2004. Reunião Técnica Para Discutir e Avaliar os Resultados do Monitoramento de Resistência do Aedes aegypti a Inseticidas. Brasília: Distrito Federal.
  17. Secretaria de Vigilância em Saúde/Ministério da Saúde, 2005. Normas Para Utilização de Bioinseticida à Base Bacillus thuringiensis israelensis (Bti) Para Controle de Aedes aegypti. Brasília: Distrito Federal.
  18. Centers for Disease Control, 1998. Insecticide Resistance. Atlanta: Centers for Disease Control.
  19. Braga IA, Mello CB, Montella IR, Lima JBP, Martins-Jr AJ, Medeiros PFV, Valle D, 2005. Effectiveness of methoprene, an insect growth regulator, against temephos-resistant Aedes aegypti populations from different Brazilian localities, under laboratory conditions. J Med Entomol 42 : 830–837. [Google Scholar]
  20. Davidson G, Zahar AR, 1973. The practical implications of resistance of malaria vectors to insecticides. Bull Wld Hlth Org 49 : 475–483. [Google Scholar]
  21. Mazzari MB, Georghiou GP, 1995. Characterization of resistance to organophosphate, carbamate, and pyrethroid insecticides in field populations of Aedes aegypti from Venezuela. J Am Mosq Cont Assoc 11 : 315–322. [Google Scholar]
  22. Secretaria de Vigilância em Saúde / Ministério da Saúde, 2006. Reunião Técnica Para Discutir Status de Resistência de Aedes aegypti. Rio de Janeiro: Ministério da Saúde.
  23. Lima JBP, Melo NV, Valle D, 2005. Persistence of Vectobac WDG and Metoprag S-2G against Aedes aegypti larvae using a semi-field bioassay in Rio de Janeiro, Brazil. Rev Inst Med Trop SP 47 : 7–12. [Google Scholar]
  24. Macoris MLG, Andrighetti MTM, Takaku L, Glasser CM, Garbeloto VC, Bracco JE, 2003. Resistance of Aedes aegypti from the State of São Paulo, Brazil, to organophosphates insecticides. Mem Inst Oswaldo Cruz 98 : 703–708. [Google Scholar]
  25. Rodriguez MM, Bisset J, Ruiz M, Soca A, 2003. Cross-resistance to pyrethroid and organophosphorus insecticides induced by selection with temephos in Aedes aegypti (Diptera: Culicidae) from Cuba. J Med Entomol 39 : 882–888. [Google Scholar]
  26. Flores AE, Albeldaño Vázquez W, Salas IF, Badii MH, Becerra HL, Garcia GP, Fuentes SL, Brogdon WG, Black WC, Beaty B, 2005. Elevated α-esterase levels associated with permethrin tolerance in Aedes aegypti (L.) from Baja California, Mexico. Pest Biochem Physiol 82 : 66–78. [Google Scholar]
  27. Lumjuan N, McCarroll L, Prapanthadara L, Hemingway J, Ranson H, 2005. Elevated activity of an Epsilon class glutathione transferase confers DDT resistance in the dengue vector, Aedes aegypti. Insect Bioch Mol Biol 35 : 861–871. [Google Scholar]
  28. Raymond M, Berticart C, Weill M, Pasteur N, Chevillon C, 2001. Insecticide resistance in the mosquito Culex pipiens: what have we learned about adaptation? Genetica 112–113 : 287–296. [Google Scholar]
  29. Labbe P, Lenormand T, Raymond M, 2005. On the worldwide spread of an insecticide resistance gene: a role for a local selection. J Evol Biol 18 : 1471–1484. [Google Scholar]
  30. Lima-Castelani ARA, Ceron CR, Bicudo HEMC, 2004. Variation of genetic expression during development, revealed by esterases patterns in Aedes aegypti (Diptera, Culicidae). Bioch Genet 42 : 69–83. [Google Scholar]
  31. Hemingway J, Karunaratne HPPK, 1998. Mosquito carboxylesterases: a review of the molecular biology and biochemistry of a major insecticide resistance mechanism. Med Vet Entomol 12 : 1–12. [Google Scholar]
  32. Aldridge WN, 1953. Serum esterases. 1. Two types of esterases (A and B) hydrolysing p-nitrophenyl acetate, propionate and butyrate, and a method for their determination. Bioch J 53 : 110–117. [Google Scholar]
  33. Okuda H, 1991. Esterases. Kuby AK, Kuby SE, Kuby SA, eds. Study of Enzymes VII. London and New York: CRC Press; 563–579.
  34. International Union of Biochemistry and Molecular Biology, 1992. Enzyme Nomenclature: Recommendations. San Diego, CA: Nomenclature Committee. Academic Press.
  35. Hemingway J, 2000. The molecular basis of two contrasting metabolic mechanisms of insecticide resistance. Insect Bioch Mol Biol 30 : 1009–1015. [Google Scholar]
  36. Hemingway J, Hawkes NJ, McCarroll L, Ranson H, 2004. The molecular basis of insecticide resistance in mosquitoes. Insect Bioch Mol Biol 34 : 653–665. [Google Scholar]
  37. Wheelock CE, Shan G, Ottea J, 2005. Overview of carboxylesterases and their role in the metabolism of insecticides. J Pestic Sci 30 : 75–83. [Google Scholar]
  38. Rodriguez MM, Bisset JA, Diaz C, Soca LA, 2002. Resistencia cruzada a piretroides en Aedes aegypti de Cuba inducido por la selección com el insecticida organofosforado malation. Rev Cubana Med Trop 55 : 105–111. [Google Scholar]
  39. Field WN, Hitchen JM, Rees AT, 1984. Esterase activity in strains of Aedes aegypti (Diptera: Culicidae) tolerant and susceptible to the organophosphate insecticide malathion. J Med Entomol 21 : 412–418. [Google Scholar]
  40. Hayes JD, Wolf CR, 1988. Role of Glutathione transferase in drug resistance. Sies H, Ketterer B, eds. Glutathione Conjugation: Mechanisms and Biological Significance. London: Academic Press; 315–355.
  41. Vontas JG, Small GJ, Nikou DC, Ranson H, Hemingway J, 2002. Purification, molecular cloning and heterologous expression of a glutathione S-transferase involved in insecticide resistance from the rice brown planthopper, Nilaparvata lugens. Biochem J 362 : 329–337. [Google Scholar]
  42. Enayati AA, Ranson H, Hemingway J, 2005. Insect glutathione transferases and insecticide resistance. Insect Mol Biol 14 : 3–8. [Google Scholar]
  43. Lowy I, 1999. Representing and interventing in public health: viruses, mosquitoes and Rockefeller Foundation experts in Brazil. Hist Cienc Saúde-Manguinhos 5 : 647–677. [Google Scholar]
  44. Franco O, 1976. História da Febre Amarela no Brasil. Superintendência de Campanhas de Saúde Pública. Rio de Janeiro: Ministério da Saúde.
  45. Ayres CFJ, Melo-Santos MAV, Sole-Cava AM, Furtado AF, 2003. Genetic differentiation of Aedes aegypti (Diptera, Culicidae), the major dengue vector in Brazil. J Med Entomol 40 : 430–435. [Google Scholar]
  46. Paduan KS, Araújo-Júnior JP, Ribolla PEM, 2006. Genetic variability in geographical populations of Aedes aegypti (Diptera, Culicidae) in Brazil elucidated by molecular markers. Gen Mol Biol 29 : 391–395. [Google Scholar]
  47. Soderlund DM, Knipple DC, 2003. The molecular biology of Knockdown resistance to pyrethroid insecticides. Insect Biochem Mol Biol 33 : 563–577. [Google Scholar]
  48. Brengues C, Hawkes NJ, Chandre F, McCarroll L, Duchon S, Guillet P, Manguin S, Morgan JC, Hemingway J, 2003. Pyrethroid and DDT cross-resistance in Aedes aegypti is correlated with novel mutations in the voltage-gated sodium channel gene. Med Vet Entomol 17 : 87–94. [Google Scholar]
  49. Prapanthadara L, Hemingway J, Ketterman AJ, 1993. Partial purification and characterization of glutathione-S-transferase involved in DDT resistance from the mosquito Anopheles gambiae. Pest Bioch Phys 47 : 119–133. [Google Scholar]
  50. Prapanthadara L, Hemingway J, Ketterman AJ, 1995. DDT-resistance in Anopheles gambiae Giles from Zanzibar Tanzania, based on increased DDT-dehydrochlorinase activity of glutathione-S-transferases. Bull Entomol Res 85 : 267–274. [Google Scholar]
  51. Sousa-Polezzi R, Bicudo H, 2005. Genetic variation along time in a Brazilian population of Aedes aegypti (Diptera: Culicidae), detected by changes in the esterase patterns. Genetica 125 : 43–45. [Google Scholar]

Data & Media loading...

  • Received : 27 Sep 2006
  • Accepted : 18 Mar 2007

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error