1921
Volume 77, Issue 6_Suppl
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Genetic modification (GM) of mosquitoes (which renders them genetically modified organisms, GMOs) offers opportunities for controlling malaria. Transgenic strains of mosquitoes have been developed and evaluation of these to 1) replace or suppress wild vector populations and 2) reduce transmission and deliver public health gains are an imminent prospect. The transition of this approach from confined laboratory settings to open field trials in disease-endemic countries (DECs) is a staged process that aims to maximize the likelihood of epidemiologic benefits while minimizing potential pitfalls during implementation. Unlike conventional approaches to vector control, application of GM mosquitoes will face contrasting expectations of multiple stakeholders, the management of which will prove critical to safeguard support and avoid antagonism, so that potential public health benefits can be fully evaluated. Inclusion of key stakeholders in decision-making processes, transfer of problem-ownership to DECs, and increased support from the wider malaria research community are important prerequisites for this. It is argued that the many developments in this field require coordination by an international entity to serve as a guiding coalition to stimulate collaborative research and facilitate stakeholder involvement. Contemporary developments in the field of modern biotechnology, and in particular GM, requires competencies beyond the field of biology, and the future of transgenic mosquitoes will hinge on the ability to govern the process of their introduction in societies in which perceived risks may outweigh rational and responsible involvement.

Loading

Article metrics loading...

/content/journals/10.4269/ajtmh.2007.77.232
2007-12-01
2017-11-22
Loading full text...

Full text loading...

/deliver/fulltext/14761645/77/6_Suppl/0770232.html?itemId=/content/journals/10.4269/ajtmh.2007.77.232&mimeType=html&fmt=ahah

References

  1. Spielman A, d’Antonio M, 2002. Mosquito: The Story of Man’s Deadliest Foe. London: Faber and Faber.
  2. Ross R, 1911. The Prevention of Malaria. London: Murray.
  3. MacDonald G, 1957. The Epidemiology and Control of Malaria. London: Oxford University Press.
  4. Hemingway J, Field L, Vontas J, 2002. An overview of insecticide resistance. Science 298 : 96–97.
  5. Hemingway J, 2004. Taking aim at mosquitoes. Nature 430 : 936.
  6. Hill J, Lines J, Rowland M, 2006. Insecticide-treated nets. Adv Parasitol 61 : 77–128.
  7. Grabowsky M, Nobiya T, Ahun M, Donna R, Lengor M, Zimmerman D, Ladd H, Hoekstra E, Bello A, Baffoe-Wilmot A, Amofah G, 2005. Distributing insecticide-treated bednets during measles vaccination: a low-cost means of achieving high and equitable coverage. Bull World Health Organ 83 : 195–201.
  8. United Nations Environment Programme, 2004. Stockholm Convention on Persistent Organic Pollutants (POPs). Available at: http://www.pops.int/. Accessed July 31, 2007.
  9. Curtis CF, 2004. Should the use of DDT be revived for malaria vector control? Biomedica (Bogota) 22 : 455–461.
  10. Maharaj R, Mthembu DJ, Sharp BL, 2005. Impact of DDT reintroduction on malaria transmission in KwaZulu-Natal. S Afr Med J 95 : 871–874.
  11. Kaiser J, Enserink M, 2000. Environmental toxicology. Treaty takes a POP at the dirty dozen. Science 290 : 2053.
  12. Killeen GF, Seyoum A, Knols BGJ, 2004. Rationalizing historical successes of malaria control in Africa in terms of mosquito resource availability management. Am J Trop Med Hyg 71 (Suppl 2): 87–93.
  13. Gu W, Novak RJ, 2005. Habitat-based modeling of impacts of mosquito larval interventions on entomological inoculation rates, incidence, and prevalence of malaria. Am J Trop Med Hyg 73 : 546–552.
  14. Christophides GK, 2005. Transgenic mosquitoes and malaria transmission. Cell Microbiol 7 : 325–333.
  15. Thomas DD, Donnelly CA, Wood RJ, Alphey LS, 2000. Insect population control using a dominant, repressible, lethal genetic system. Science 287 : 2474–2476.
  16. Rothwell R, 1991. Towards the fifth-generation innovation process. Henry J, Mayle D, eds. Managing Innovation and Change. Second Edition. London: Sage Publications, 115–135.
  17. Dyck VA, Hendrichs J, Robinson AS, 2005. Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management. Dordrecht: Springer.
  18. Esteva L, Mo Yang H, 2005. Mathematical model to assess the control of Aedes aegypti mosquitoes by the sterile insect technique. Math Biosci 198 : 132–147.
  19. Benedict MQ, Robinson AS, 2003. The first releases of transgenic mosquitoes: an argument for the sterile insect technique. Trends Parasitol 19 : 349–355.
  20. Anonymous, 1991. Prospects for Malaria Control by Genetic Manipulation of Its Vectors. Geneva: World Health Organization.
  21. Curtis CF, 1968. Possible use of translocations to fix desirable genes in insect pest populations. Nature 218 : 368–369.
  22. Spradling AC, Rubin GM, 1982. Transposition of cloned P elements into Drosophila germ line chromosomes. Science 218 : 341–347.
  23. Morel CM, Touré YT, Dobrokhotov B, Oduola AM, 2002. The mosquito genome—a breakthrough for public health. Science 298 : 79.
  24. Catteruccia F, Nolan T, Loukeris TG, Blass C, Savakis C, Kafatos FC, Crisanti A, 2000. Stable germline transformation of the malaria mosquito Anopheles stephensi. Nature 405 : 959–962.
  25. Grossman GL, Rafferty CS, Clayton JR, Stevens TK, Mukabayire O, Benedict MQ, 2001. Germline transformation of the malaria vector, Anopheles gambiae, with the piggyBac transposable element. Insect Mol Biol 10 : 597–604.
  26. Perera OP, Harrell RA II, Handler AM, 2002. Germ-line transformation of the South American malaria vector, Anopheles albimanus, with a piggyBac/EGFP transposon vector is routine and highly efficient. Insect Mol Biol 11 : 291–297.
  27. Ito J, Ghosh A, Moreira LA, Wimmer EA, Jacobs-Lorena M, 2002. Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature 417 : 452–455.
  28. Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JM, Wides R, Salzberg SL, Loftus B, Yandell M, Majoros WH, Rusch DB, Lai Z, Kraft CL, Abril JF, Anthouard V, Arensburger P, Atkinson PW, Baden H, de Berardinis V, Baldwin D, Benes V, Biedler J, Blass C, Bolanos R, Boscus D, Barnstead M, Cai S, Center A, Chaturverdi K, Christophides GK, Chrystal MA, Clamp M, Cravchik A, Curwen V, Dana A, Delcher A, Dew I, Evans CA, Flanigan M, Grundschober-Freimoser A, Friedli L, Gu Z, Guan P, Guigo R, Hillenmeyer ME, Hladun SL, Hogan JR, Hong YS, Hoover J, Jaillon O, Ke Z, Kodira C, Kokoza E, Koutsos A, Letunic I, Levitsky A, Liang Y, Lin JJ, Lobo NF, Lopez JR, Malek JA, McIntosh TC, Meister S, Miller J, Mobarry C, Mongin E, Murphy SD, O’Brochta DA, Pfannkoch C, Qi R, Regier MA, Remington K, Shao H, Sharakhova MV, Sitter CD, Shetty J, Smith TJ, Strong R, Sun J, Thomasova D, Ton LQ, Topalis P, Tu Z, Unger MF, Walenz B, Wang A, Wang J, Wang M, Wang X, Woodford KJ, Wortman JR, Wu M, Yao A, Zdobnov EM, Zhang H, Zhao Q, Zhao S, Zhu SC, Zhimulev I, Coluzzi M, della Torre A, Roth CW, Louis C, Kalush F, Mural RJ, Myers EW, Adams MD, Smith HO, Broder S, Gardner MJ, Fraser CM, Birney E, Bork P, Brey PT, Venter JC, Weissenbach J, Kafatos FC, Collins FH, Hoffman SL, 2002. The genome sequence of the malaria mosquito Anopheles gambiae. Science 298 : 129–149.
  29. Alphey L, Beard CB, Billingsley P, Coetzee M, Crisanti A, Curtis C, Eggleston P, Godfray C, Hemingway J, Jacobs-Lorena M, James AA, Kafatos FC, Mukwaya LG, Paton M, Powell JR, Schneider W, Scott TW, Sina B, Sinden R, Sinkins S, Spielman A, Toure Y, Collins FH, 2002. Malaria control with genetically manipulated insect vectors. Science 298 : 119–121.
  30. Coleman PG, Alphey L, 2004. Genetic control of vector populations: an imminent prospect. Trop Med Int Health 9 : 433–437.
  31. Scott TW, Takken W, Knols BGJ, Boëte C, 2002. The ecology of genetically modified mosquitoes. Science 298 : 117–119.
  32. Takken W, Scott TW, eds. 2003. Ecological Aspects for Application of Genetically Modified Mosquitoes. Dordrecht: Springer.
  33. Ferguson HM, John B, Ng’habi K, Knols BGJ, 2005. Redressing the sex imbalance in knowledge of vector biology. Trends Ecol Evol 20 : 202–209.
  34. Knols BGJ, Louis C, eds. 2006. Bridging Laboratory and Field Research for Genetic Control of Disease Vectors. Dordrecht: Springer.
  35. Hill CA, Kafatos FC, Stansfield SK, Collins FH, 2005. Arthropod-borne diseases: vector control in the genomics era. Nat Rev Microbiol 3 : 262–268.
  36. Gould F, Magori K, Huang X, 2006. Genetic strategies for controlling mosquito-borne diseases. Am Sci 94 : 238–246.
  37. Boëte C, ed., 2006. Genetically Modified Mosquitoes for Malaria Control. Georgetown: Eurekah/Landes Bioscience.
  38. Knols BGJ. Current controversies: is the transgenic mosquito as a weapon against malaria ever going to fly? Available at: http://www.kaisernetwork.org/health_cast/hcast_index.cfm?display=detail&hc=1567. Accessed July 31, 2007.
  39. Marrelli MT, Moreira CK, Kelly D, Alphey L, Jacobs-Lorena M, 2006. Mosquito transgenesis: what is the fitness cost? Trends Parasitol 22 : 197–202.
  40. Moreira LA, Wang J, Collins FH, Jacobs-Lorena M, 2004. Fitness of anopheline mosquitoes expressing transgenes that inhibit Plasmodium development. Genetics 166 : 1337–1341.
  41. Lyman RF, Lawrence F, Nuzhdin SV, Mackay TF, 1996. Effects of single P-element insertions on bristle number and viability in Drosophila melanogaster. Genetics 143 : 277–292.
  42. Horn C, Handler AM, 2005. Site-specific genomic targeting in Drosophila. Proc Natl Acad Sci USA 102 : 12483–12488.
  43. Catteruccia F, Godfray HC, Crisanti A, 2003. Impact of genetic manipulation on the fitness of Anopheles stephensi mosquitoes. Science 299 : 1225–1227.
  44. Riehle MA, Jacobs-Lorena M, 2005. Using bacteria to express and display anti-parasite molecules in mosquitoes: current and future strategies. Insect Biochem Mol Biol 35 : 699–707.
  45. Ferguson H, Gandon S, Mackinnon M, Read A, 2006. Malaria parasite virulence in mosquitoes and its implications for the introduction and efficacy of GMM malaria control programmes. Boëte C, ed. Genetically Modified Mosquitoes for Malaria Control. Georgetown: Eurekah/Landes Bioscience, 103–116.
  46. Scott TW, Rasgon JL, Black WC IV, Gould F, 2006. Fitness studies: developing a consensus methodology. Knols BGJ, Louis C, eds. Bridging Laboratory and Field Research for Genetic Control of Disease Vectors. Dordrecht: Springer, 171–181.
  47. James AA, 2005. Gene drive systems in mosquitoes: rules of the road. Trends Parasitol 21 : 64–67.
  48. Braig HR, Yan G, 2001. The spread of genetic constructs in natural insect populations. Letourneau DK, Burrows BE, eds. Genetically Engineered Organisms: Assessing Environmental and Human Health Effects. Boca Raton: CRC Press, 251–314.
  49. Rasgon JL, Gould F, 2005. Transposable element insertion location bias and the dynamics of gene drive in mosquito populations. Insect Mol Biol 14 : 493–500.
  50. Curtis CF, 2006. Models to investigate some issues regarding the feasibility of driving refractoriness genes into mosquito vector populations. Knols BGJ, Louis C, eds. Bridging Laboratory and Field Research for Genetic Control of Disease Vectors. Dordrecht: Springer, 199–202.
  51. Curtis CF, Coleman PG, Kelly DW, Campbell-Lendrum DH, 2006. Advantages and limitations of transgenic vector control: sterile males versus gene drivers. Boëte C, ed. Genetically Modified Mosquitoes for Malaria Control. Georgetown: Eurekah/Landes Bioscience, 60–78.
  52. Jacobs-Lorena M, James AA, 2003. Genetic Modification of Insects of Medical Importance: Past, Present and Future. Geneva: World Health Organization.
  53. Touré YT, Knols BGJ, 2006. Genetically-modified mosquitoes for malaria control: requirements to be considered before field releases. Boëte C, ed. Genetically Modified Mosquitoes for Malaria Control. Georgetown: Eurekah/Landes Bioscience, 146–151.
  54. USDA (United States Department of Agriculture), 2002. http://www.aphis.usda.gov/biotech/arthropod.
  55. Grand Challenges in Global Health, 2006. http://www.gcgh.org/subcontent.aspx?SecID=392
  56. Clayton J, 2006. Scientists plan field tests for GM mosquitoes. Lancet Infect Dis 6 : 191–192.
  57. Knols BGJ, Bossin H, 2006. Identification and characterization of field sites for genetic control of mosquitoes. Knols BGJ, Louis C, eds. Bridging Laboratory and Field Research for Genetic Control of Disease Vectors. Dordrecht: Springer, 203–209.
  58. Spielman A, Beier JC, Kiszewski AE, 2002. Ecological and community considerations in engineering arthropods to suppress vector-borne disease. Letourneau DK, Burrows BE, eds. Genetically Engineered Organisms: Assessing Environmental and Human Health Effects. Boca Raton: CRC Press, 315–329.
  59. Zhong D, Temu EA, Guda T, Gouagna L, Menge D, Pai A, Githure J, Beier JC, Yan G, 2006. Dynamics of gene introgression in the African malaria vector Anopheles gambiae. Genetics 172 : 2359–2365.
  60. PATH, 2005. Malaria Research and Development: An Assessment of Global Investment. Seattle: Malaria R&D Alliance. Available at http://www.malariaalliance.org/PDFs/RD_Report_complete.pdf. Accessed July 31, 2007.
  61. Vreysen MJB, Saleh KM, Ali MY, Abdulla AM, Zhu ZR, Juma KG, Dyck VA, Msangi AR, Mkonyi PA, Feldmann HU, 2000. Glossina austeni (Diptera: Glossinidae) eradicated on the island of Unguja, Zanzibar, using the sterile insect technique. J Econ Entomol 93 : 123–135.
  62. Mshinda H, Killeen GF, Mukabana WR, Mathenge EM, Mboera LEG, Knols BGJ, 2004. Development of genetically modified mosquitoes in Africa. Lancet Infect Dis 4 : 264–265.
  63. Touré YT, Manga L, 2006. Ethical, legal and social issues in the use of genetically modified vectors for disease control. Knols BGJ, Louis C, eds. Bridging Laboratory and Field Research for Genetic Control of Disease Vectors. Dordrecht: Springer, 221–225.
  64. Pew Initiative on Food and Biotechnology, 2005. Biotech bugs: a look at the science and public policy surrounding the release of genetically modified insects, Washington, DC, September 20–21, 2004.
  65. ACME (American Committee of Medical Entomology), 2002. Arthropod containment guidelines. Available at: http://www.astmh.org/SIC/acme.cfm ACG. Accessed July 31, 2007.
  66. International Atomic Energy Agency, 2006. Status and Risk Assessment of the Use of Transgenic Arthropods in Plant Protection. FAO/IAEA, Vienna, Austria.
  67. Curtis CF, 1976. Population replacement in Culex fatigans by means of cytoplasmic incompatibility. 2. Field cage experiments with overlapping generations. Bull World Health Organ 53 : 107–119.
  68. Knols BGJ, Njiru BN, Mathenge EM, Mukabana WR, Beier JC, Killeen GF, 2002. MalariaSphere: a greenhouse-enclosed simulation of a natural Anopheles gambiae (Diptera: Culicidae) ecosystem in western Kenya. Malar J 1 : 19.
  69. Knols BGJ, Njiru BN, Mukabana WR, Mathenge EM, Killeen GF, 2003. Contained semi-field environments for ecological studies on transgenic African malaria vectors: benefits and constraints. Takken W, Scott TW, eds. Ecological Aspects for Application of Genetically Modified Mosquitoes. Dordrecht: Springer, 91–106.
  70. Fiksel J, Covello VT, 1986. Biotechnology Risk Assessment: Issues and Methods for Environmental Introductions. New York: Pergamon Press.
  71. Handler AM, Atkinson PW, 2006. Areas of concern for the evaluation of transgenic arthropods. International Atomic Energy Agency. Status and Risk Assessment of the Use of Transgenic Arthropods in Plant Protection. FAO/IAEA, Vienna, Austria. 45–56.
  72. Macer DRJ, 2003. Ethical, Legal and Social Issues of Genetically Modified Disease Vectors in Public Health. Geneva: UNDP/World Bank/WHO.
  73. Macer D, 2005. Ethical, legal and social issues of genetically modifying insect vectors for public health. Insect Biochem Mol Biol 35 : 649–660.
  74. Aultman KS, Walker ED, Gifford F, Severson DW, Beard CB, Scott TW, 2000. Research ethics. Managing risks of arthropod vector research. Science 288 : 2321–2322.
  75. Robinson AS, Franz G, Atkinson PW, 2004. Insect transgenesis and its potential role in agriculture and human health. Insect Biochem Mol Biol 34 : 113–120.
  76. Knols BGJ, Dicke M, 2003. Bt crop risk assessment in the Netherlands. Nat Biotechnol 21 : 973–974.
  77. Oh New Delhi, Oh Geneva (editorial). 1975. Nature 256 : 355–357.
  78. World Health Organization, 1976. WHO-supported collaborative research projects in India: the facts. WHO Chron 30 : 131–139.
  79. Grover KK, Suguna SG, Uppal DK, Singh KRP, Ansari MA, 1976. Field experiments on the competitiveness of males carrying genetic control systems for Aedes aegypti. Entomol Exp Appl 20 : 8–18.
  80. Reuben R, Rahman SJ, Panicker KN, Das PK, Brooks GD, 1975. The development of a strategy for large-scale releases of sterile males of Aedes aegypti (L.). J Commun Dis 7 : 313–326.
  81. Powell K, Jayaraman KS, 2002. Mosquito researchers deny plotting secret biowarfare test. Nature 419 : 867.
  82. Curtis CF, 2006. Review of previous applications of genetics to vector control. Knols BGJ, Louis C, eds. Bridging Laboratory and Field Research for Genetic Control of Disease Vectors. Dordrecht: Springer, 33–43.
  83. Winstanley DD, Sorabji S, Dawson S, 1995. When the pieces don’t fit: a stakeholder power matrix to analyse public sector restructuring. Publ Money Manag April–June, 19–26.
  84. Chan Kim W, Mauborgne R, 2005. Blue Ocean Strategy: How to Create Uncontested Market Space and Make Competition Irrelevant. Cambridge, MA: Harvard Business School Press.
  85. Macer D, 2005. Ethical, legal and social issues of genetically modifying insect vectors for public health. Insect Biochem Mol Biol 35 : 649–660.
  86. Kaneko A, Taleo G, Kalkoa M, Yamar S, Kobayakawa T, Bjorkman A, 2000. Malaria eradication on islands. Lancet 356 : 1560–1564.
  87. Reyburn H, Drakeley C, 2006. The epidemiological consequences of reducing the transmission intensity of P. falciparum. Boëte C, ed. Genetically Modified Mosquitoes for Malaria Control. Georgetown: Eurekah/Landes Bioscience, 89–102.
  88. Snow RW, Marsh K, 2002. The consequences of reducing transmission of Plasmodium falciparum in Africa. Adv Parasitol 52 : 235–264.
  89. Boëte C, Koella JC, 2002. A theoretical approach to predicting the success of genetic manipulation of malaria mosquitoes in malaria control. Malar J 1 : 3.
  90. Inaba M, Macer DRJ, 2003. Attitudes to biotechnology in Japan in 2003. Eubios J Asian Int Bioethics 13 : 78–89.
  91. Mercer D, (1998). Future Revolutions. London: Orion Business.
  92. World Bank Regional Reports—Africa Region, 2001. http://web.mit.edu/urbanupgrading/upgrading/case-examples/overview-africa/regional-overview.html
  93. Donnelly MJ, McCall PJ, Lengeler C, Bates I, D’Alessandro U, Barnish G, Konradsen F, Klinkenberg E, Townson H, Trape JF, Hastings IM, Mutero C, 2005. Malaria and urbanization in sub-Saharan Africa. Malar J 4 : 12.
  94. Curtis CF, Andreasen M, 2000. Large scale control of mosquito vectors of disease. Tan KH, ed. Area-Wide Control of Fruit Flies and Other Insect Pests. Palau Penang: Penerbit Universiti Sains Malaysia, 135–142.
  95. Kristan M, Fleischmann H, della Torre A, Stich A, Curtis CF, 2003. Pyrethroid resistance/susceptibility and differential urban/rural distribution of Anopheles arabiensis and An. gambiae s.s. malaria vectors in Nigeria and Ghana. Med Vet Entomol 17 : 326–332.
  96. Reed ZH, Friede M, Kieny MP, 2006. Malaria vaccine development: progress and challenges. Curr Mol Med 6 : 231–245.
  97. Knols BGJ, Hood-Nowotny RC, Bossin H, Franz G, Robinson A, Mukabana WR, Kemboi SK, 2006. GM sterile mosquitoes—a cautionary note. Nat Biotechnol 24 : 1067–1068.
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.2007.77.232
Loading
/content/journals/10.4269/ajtmh.2007.77.232
Loading

Data & Media loading...

  • Received : 21 Aug 2006
  • Accepted : 27 Dec 2006

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error