Volume 77, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


The transmission of parasites of the genus involves a large diversity of mammalian reservoir hosts. However, many of these are yet to be identified, mainly in isolated biotopes such as the Amazonian rain forest. Furthermore, the trophic preferences of insect vectors have major epidemiologic implications. In this study, we developed a molecular tool for the identification of blood meals of phlebotomine sand flies. This assay is based on specific amplification and sequencing of the blood meal–derived single copy prepronociceptin () gene, which is used as a target in phylogenetic studies of mammals. Sand flies were identified simultaneously with the blood-meal identification, using molecular analysis of a ribosomal locus. After a systematic assessment of the sensitivity and specificity of polymerase chain reaction amplification of the gene using human fed sand flies, the assay was tested on wild-caught sand flies. This work has important implications for the discovery of new reservoir hosts and for a better understanding of complex parasite life cycles.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Brandfio-Filho SP, Brito ME, Carvalho FG, Ishikawa EA, Cupolillo E, Floeter-Winter L, Shaw JJ, 2003. Wild and synanthropic hosts of Leishmania (Viannia) braziliensis in the endemic cutaneous leishmaniasis locality of Amaraji, Pernambuco State, Brazil. Trans R Soc Trop Med Hyg 97 : 291–296. [Google Scholar]
  2. Boakye DA, Tang J, Truc P, Merriweather A, Unnasch TR, 1999. Identification of bloodmeals in haematophagous Diptera by cytochrome B heteroduplex analysis. Med Vet Entomol 13 : 282–287. [Google Scholar]
  3. Ngumbi PM, Lawyer PG, Johnson RN, Kiilu G, Asiago C, 1992. Identification of phlebotomine sandfly bloodmeals from Baringo District, Kenya, by direct enzyme-linked immunosorbent assay (ELISA). Med Vet Entomol 6 : 385–388. [Google Scholar]
  4. Njiokou F, Simo G, Mbida A, Truc P, Cuny G, Herder S, 2004. A study of host preference in tsetse flies using a modified heteroduplex PCR-based method. Acta Trop 91 : 117–120. [Google Scholar]
  5. Richards SL, Ponnusamy L, Unnasch TR, Hassan HK, Apperson CS, 2006. Host-feeding patterns of Aedes albopictus (Diptera: Culicidae) in relation to availability of human and domestic animals in suburban landscapes of central North Carolina. J Med Entomol 43 : 543–551. [Google Scholar]
  6. Gokool S, Smith DF, Curtis CF, 1992. The use of PCR to help quantify the protection provided by impregnated bednets. Parasitol Today 8 : 347–350. [Google Scholar]
  7. Kirstein F, Gray JS, 1996. A molecular marker for the identification of the zoonotic reservoirs of Lyme Borreliosis by analysis of the blood meal in its European vector Ixodes ricinus. Appl Environ Microbiol 62 : 4060–4065. [Google Scholar]
  8. Lainson R, Shaw JJ, Silveira FT, De Souza AA, Braga RR, Ishikawa EA, 1994. The dermal leishmaniases of Brazil, with special reference to the eco-epidemiology of the disease in Amazonia. Mem Inst Oswaldo Cruz 89 : 435–443. [Google Scholar]
  9. Desjeux P, 2004. Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis 27 : 305–318. [Google Scholar]
  10. Dereure J, 1999. Réservoirs de leishmanies. Dedet P, ed. Les Leishmanioses. Second edition. Paris: AUPELF-UREF, 109–130.
  11. Leger N, Depaquit J, 1999. Les phlébotomes. Dedet JP, ed. Les Leishmanioses. First edition. Paris: AUPELF-UREF, 89–108.
  12. De Castro EA, Luz E, Telles FQ, Pandey A, Biseto A, Dinaiski M, Sbalqueiro I, Thomaz Soccol V, 2005. Eco-epidemiological survey of Leishmania (Viannia) braziliensis American cutaneous and mucocutaneous leishmaniasis in Ribeira Valley River, Parana State, Brazil. Acta Trop 93 : 141–149. [Google Scholar]
  13. Saliba EK, Oumeish OY, 1999. Reservoir hosts of cutaneous leishmaniasis. Clin Dermatol 17 : 275–277. [Google Scholar]
  14. Saliba EK, Saleh N, Oumeish OY, Khoury S, Bisharat Z, Al-Ouran R, 1997. The endemicity of L. tropica (zymodeme MON-137) in the Eira-Yarqa area of salt district, Jordan. Ann Trop Med Parasitol 91 : 453–459. [Google Scholar]
  15. Chow E, Wirtz RA, Scott TW, 1993. Identification of blood meals in Aedes aegypti by antibody sandwich enzyme-linked immunosorbent assay. J Am Mosq Control Assoc 9 : 196–205. [Google Scholar]
  16. Hunter FF, Bayly R, 1991. ELISA for identification of blood meal source in black flies (Diptera: Simuliidae). J Med Entomol 28 : 527–532. [Google Scholar]
  17. Staak C, Allmang B, Kampe U, Mehlitz D, 1981. The complement fixation test for the species identification of blood meals from tsetse flies. Trop Med Parasitol 32 : 97–98. [Google Scholar]
  18. Tempelis CH, 1975. Host-feeding patterns of mosquitoes, with a review of advances in analysis of blood meals by serology. J Med Entomol 11 : 635–653. [Google Scholar]
  19. Kreike J, Kampfer S, 1999. Isolation and characterization of human DNA from mosquitoes (Culicidae). Int J Legal Med 112 : 380–382. [Google Scholar]
  20. Replogle JW, Lord D, Budowle B, Meinking TL, Taplin D, 1994. Identification of host DNA by amplified fragment length polymorphism analysis: preliminary analysis of human crab louse (Anoplura: Pediculidae) excreta. J Med Entomol 31 : 686–690. [Google Scholar]
  21. Lee JH, Hassen H, Hill G, Cupp WE, Higazi TB, Mitchell CJ, Godsey MS, Unnasch TR, 2002. Identification of mosquito avian-derived blood meals by polymerase chain reaction-heteroduplex analysis. Am J Trop Med Hyg 66 : 599–604. [Google Scholar]
  22. Ngo KA, Kramer LD, 2003. Identification of mosquito blood-meals using polymerase chain reaction (PCR) with order-specific primers. J Med Entomol 40 : 215–222. [Google Scholar]
  23. Kent RJ, Norris DE, 2005. Identification of mammalian blood meals in mosquitoes by a multiplexed polymerase chain reaction targeting cytochrome b. Am J Trop Med Hyg 73 : 336–342. [Google Scholar]
  24. Castresana J, 2001. Cytochrome b phylogeny and the taxonomy of great apes and mammals. Mol Biol Evol 18 : 465–471. [Google Scholar]
  25. Johns GC, Avise JC, 1998. A comparative summary of genetic distances in the vertebrates from the mitochondrial cytochrome b. Mol Biol Evol 15 : 1481–1490. [Google Scholar]
  26. Kocher TD, Thomas WK, Meyer A, Edwards SV, Paabo S, Villablanca FX, Wilson AC, 1989. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86 : 6196–6200. [Google Scholar]
  27. Lara MC, Patton JL, Da silva MN, 1996. The simultaneous diversification of South American echimyid rodents (Hystricognathi) based on complete Cytochrome b sequences. Mol Phylogenet Evol 5 : 403–413. [Google Scholar]
  28. Leduc RG, Perrin WF, Dizon AE, 1999. Phylogenetic relationships among the delphinid cetaceans based on full cytochrome b sequences. Mar Mamm Sci 15 : 619–648. [Google Scholar]
  29. Oshaghi MA, Chavshin AR, Vatandoost H, 2006. Analysis of mosquito bloodmeals using RFLP markers. Exp Parasitol 114 : 259–264. [Google Scholar]
  30. Rurangirwa FR, Minja SH, Musoke AJ, Nantulya VM, Grootenhuis J, Moloo SK, 1986. Production and evaluation of specific antisera against sera of various vertebrate species for identification of bloodmeals of Glossina morsitans centralis. Acta Trop 43 : 379–389. [Google Scholar]
  31. Mollereau C, Simons MJ, Soularue P, Liners F, Vassart G, Meunier JC, Parmentier M, 1996. Structure, tissue distribution and chromosomal localization of the prepronociceptin gene. Proc Natl Acad Sci USA 3 : 8666–8670. [Google Scholar]
  32. Murphy WJ, Eizirik E, Johnson WE, Zhang YP, Ryder OA, O’Brien SJ, 2001. Molecular phylogenetics and the origins of placental mammals. Nature 409 : 614–618. [Google Scholar]
  33. Walker JA, Kilroy GE, Xing J, Shewale J, Sinha SK, Batzer MA, 2003. Human DNA quantitation using Alu element-based polymerase chain reaction. Anal Biochem 315 : 122–128. [Google Scholar]
  34. Baeti L, Caceres AG, Lee JA, Munstermann LE, 2004. Systematic relationships among Lutzomyia sand flies (Diptera: Psychodidea) of Peru and Colombia based on the analysis of 12S and 28S ribosomal DNA sequences. Int J Parasitol 34 : 225–234. [Google Scholar]
  35. Batzer MA, Deininger PL, 2002. Alu repeats and human genomic diversity. Nat Rev Genet 3 : 370–379. [Google Scholar]
  36. Svobodova M, Sadlova J, Chang KP, Volf P, 2003. Distribution and feeding preference of the sandflies Phlebotomus sergenti and P. papatasi in a cutaneous leishmaniasis focus in Sanliurfa, Turkey. Am J Trop Med Hyg 68 : 6–9. [Google Scholar]
  37. Bongiorno G, Habluetzel A, Khoury C, Maroli M, 2003. Host preferences of phlebotomine sandflies at a hypoendemic focus of canine leishmaniasis in central Italy. Acta Trop 2 : 109–116. [Google Scholar]
  38. De Colmenares M, Portus M, Botet J, Dobano C, Gallego M, Wolff M, Segui G, 1995. Identification of blood meals of Phlebotomus perniciosus (Diptera: Psychodidae) in Spain by a competitive enzyme-linked immunosorbent assay biotin/avidin method. J Med Entomol 32 : 229–233. [Google Scholar]
  39. Marassa AM, Consales CA, Galati EA, 2004. Enzyme-linked immunosorbent assay biotin/avidin method standardization, for identification of Lutzomyia (Lutzomyia) longipalpis blood-meals (Lutz & Neiva, 1912). Rev Soc Bras Med Trop 37 : 441–446. [Google Scholar]
  40. Daba S, Daba A, Shehata MG, El Sawaf BM, 2004. A simple micro-assay method for estimating blood meal size of the sandfly, Phlebotomus langeroni (Diptera: Psychodidae). J Egypt Soc Parasitol 34 : 173–182. [Google Scholar]
  41. Torr SJ, Hargrove JW, 1998. Factors affecting the landing and feeding responses of the tsetse fly Glossina pallidipes to a stationary ox. Med Vet Entomol 12 : 196–207. [Google Scholar]
  42. Kaufman WR, 2007. Gluttony and sex in female ixodid ticks: how do they compare to other blood-sucking arthropods? J Insect Physiol 53 : 264–273. [Google Scholar]
  43. Briegel H, Rezzonico L, 1985. Concentration of host blood protein during feeding by anopheline mosquitoes (Diptera: Culicidae). J Med Entomol 22 : 612–618. [Google Scholar]
  44. Vaughan JA, Noden BH, Beier JC, 1991. Concentration of human erythrocytes by anopheline mosquitoes (Diptera: Culicidae) during feeding. J Med Entomol 28 : 780–786. [Google Scholar]
  45. Wolfgang RM, Takken W, Knols BGJ, 2002. Analysis of arthropod bloodmeals using molecular genetic markers. Trends Parasitol 18 : 505–509. [Google Scholar]
  46. Dillon RJ, Lane RP, 1993. Bloodmeal digestion in the midgut of Phlebotomus papatasi and Phlebotomus langeroni. Med Vet Entomol 7 : 225–232. [Google Scholar]
  47. Daba S, Mansour NS, Youssef FG, Shanbaky NM, Shehata MG, El Sawaf BM, 1997b. Vector-host-parasite inter-relationships in leishmaniasis. II. Influence of blood meal from natural vertebrate hosts with and without Leishmania infantum and L. major on the proteolytic activity in the gut of Phlebotomus langeroni (Diptera: Psychodidae). J Egypt Soc Parasitol 27 : 639–649 [Google Scholar]
  48. Daba S, Mansour NS, Youssef FG, Shanbaky NM, Shehata MG, El Sawaf BM, 1997a. Vector-host-parasite inter-relationships in leishmaniasis. I. The effect of Leishmania parasites on rate of digestion of blood proteins from various vertebrate hosts by the sandfly Phlebotomus langeroni (Diptera: Psychodidae). J Egypt Soc Parasitol 27 : 629–637. [Google Scholar]
  49. Afrane YA, Lawson BW, Githeko AK, Yan G, 2005. Effects of microclimatic changes caused by land use and land cover on duration of gonotrophic cycles of Anopheles gambiae (Diptera: Culicidae) in western Kenya highlands. J Med Entomol 42 : 974–980. [Google Scholar]
  50. Palit A, Bhattacharya SK, Kundu SN, 2005. Host preference of Phlebotomus argentipes and Phlebotomus papatasi in different biotopes of West Bengal, India. Int J Environ Health Res 15 : 449–454. [Google Scholar]

Data & Media loading...

  • Received : 26 Mar 2007
  • Accepted : 20 Aug 2007

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error