Volume 76, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


In the Yucatán Peninsula of Mexico, the main vector of Chagas disease is . Field studies suggest that natural transmission occurs through transient and seasonal invasion of houses by sylvatic/peridomestic triatomines, rather than through persistent domiciliated bug populations. We investigated the genetic structure of populations, using morphometry and microsatellite markers, to assess dispersal of individuals in this triatomine species and to understand the dynamics of domestic infestation. We observed low phenotypic and genetic differentiation among populations from different villages, with an FST of only 0.0553, which suggested a weak but significant population structure at this level. Similarly low but significant differences were observed among populations from the same village but different biotopes (sylvatic, peridomestic, and domestic), with FST values ranging from 0.0096 to 0.0455. These data suggested elevated dispersal of bugs between biotopes (Nm = 5–25), which was confirmed by likelihood and Bayesian assignment tests. A proportion of bugs collected within domiciles were significantly assigned to peridomestic and sylvatic areas. This study showed that has important dispersal capabilities that can explain the seasonal pattern of domicile infestation by peridomestic and sylvatic bugs. Therefore, dispersal should be taken into account in the design of effective vector control strategies.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Dumonteil E, 1999. Update on Chagas’ disease in Mexico. Salud Publica Mex 41 : 322–327. [Google Scholar]
  2. Silveira A, Vinhaes M, 1999. Elimination of vector-borne transmission of Chagas disease. Mem Inst Oswaldo Cruz 94 : 405–411. [Google Scholar]
  3. Schmuñis GA, 1999. Prevention of transfusional Trypanosoma cruzi infection in Latin America. Mem Inst Oswaldo Cruz 94 : 93–101. [Google Scholar]
  4. World Health Organization, 2002. Control of Chagas disease. World Health Organ Tech Rep Ser 905 : 1–109. [Google Scholar]
  5. Zeledón R, 1981. El Triatoma dimidiata (Latreille, 1811) y su relación con la enfermedad de Chagas. San José, Costa Rica: Universidad Estatal a Distancia.
  6. Dumonteil E, Gourbiere S, Barrera-Perez M, Rodriguez-Felix E, Ruiz-Piña H, Baños-Lopez O, Ramirez-Sierra MJ, Menu F, Rabinovich JE, 2002. Geographic distribution of Triatoma dimidiata and transmission dynamics of Trypanosoma cruzi in the Yucatan peninsula of Mexico. Am J Trop Med Hyg 67 : 176–183. [Google Scholar]
  7. Dumonteil E, Gourbiere S, 2004. Prediction of Triatoma dimidiata vector abundance and infection rate: a risk map for Trypanosoma cruzi natural transmission in the Yucatan peninsula of Mexico. Am J Trop Med Hyg 70 : 514–519. [Google Scholar]
  8. Dumonteil E, Ruiz-Piña H, Rodriguez-Felix E, Barrera-Perez M, Ramirez-Sierra MJ, Rabinovich JE, Menu F, 2004. Reinfestation of houses after intra-domicile insecticide application in the Yucatán peninsula, Mexico. Mem Inst Oswaldo Cruz 99 : 253–256. [Google Scholar]
  9. Monroy MC, Bustamante DM, Rodas AG, Enriquez ME, Rosales RG, 2003. Habitats, dispersion and invasion of sylvatic Triatoma dimidiata (Hemiptera: Reduviidae: Triatominae) in Peten, Guatemala. J Med Entomol 40 : 800–806. [Google Scholar]
  10. Dorn PL, Melgar S, Rouzier V, Gutierrez A, Combe C, Rosales R, Rodas A, Kott S, Salvia D, Monroy CM, 2003. The Chagas vector, Triatoma dimidiata (Hemiptera: Reduviidae), is panmictic within and among adjacent villages in Guatemala. J Med Entomol 40 : 436–440. [Google Scholar]
  11. Ramirez CJ, Jaramillo CA, del Pilar Delgado M, Pinto NA, Aguilera G, Guhl F, 2005. Genetic structure of sylvatic, peridomestic and domestic populations of Triatoma dimidiata (Hemiptera: Reduviidae) from an endemic zone of Boyaca, Colombia. Acta Trop 93 : 23–29. [Google Scholar]
  12. Calderon Fernandez G, Juarez MP, Ramsey J, Salazar Schettino PM, Monroy MC, Ordonez R, Cabrera M, 2005. Cuticular hydrocarbon variability among Triatoma dimidiata (Hemiptera: Reduviidae) populations from Mexico and Guatemala. J Med Entomol 42 : 780–788. [Google Scholar]
  13. Calderon Fernandez G, Juarez MP, Monroy MC, Menes M, Bustamante DM, Mijailovsky S, 2005. Intraspecific variability in Triatoma dimidiata (Hemiptera: Reduviidae) populations from Guatemala based on chemical and morphometric analyses. J Med Entomol 42 : 29–35. [Google Scholar]
  14. Calderon CI, Dorn PL, Melgar S, Chavez JJ, Rodas A, Rosales R, Monroy CM, 2004. A preliminary assessment of genetic differentiation of Triatoma dimidiata (Hemiptera: Reduviidae) in Guatemala by random amplification of polymorphic DNA-polymerase chain reaction. J Med Entomol 41 : 882–887. [Google Scholar]
  15. Lehmann P, Ordonez R, Ojeda-Baranda R, de Lira JM, Hidalgo-Sosa L, Monroy C, Ramsey JM, 2005. Morphometric analysis of Triatoma dimidiata populations (Reduviidae:Triatominae) from Mexico and Northern Guatemala. Mem Inst Oswaldo Cruz 100 : 477–482. [Google Scholar]
  16. Slatkin M, 1995. A measure of population sub-division based on microsatellite allele frequencies. Genetics 139 : 457–462. [Google Scholar]
  17. Goldstein DB, Roemer GW, Smith DA, Reich DE, Bergman A, Wayne RK, 1999. The use of microsatellite variation to infer population structure and demographic history in a natural model system. Genetics 151 : 797–801. [Google Scholar]
  18. Pritchard JK, Stephens M, Donnelly P, 2000. Inference of population structure using multilocus genotype data. Genetics 155 : 945–959. [Google Scholar]
  19. Harry M, Poyet G, Romaña CA, Solignac M, 1998. Isolation and characterization of microsatellite markers in the bloodsucking bug Rhodnius pallescens (Heteroptera: Reduviidae). Mol Ecol 7 : 1784–1786. [Google Scholar]
  20. Garcia BA, Zheng L, Perez de Rosas AR, Segura EL, 2004. Isolation and characterization of polymorphic microsatellite loci in the Chagas’ disease vector Triatoma infestans (Hemiptera: Reduviidae). Mol Ecol Notes 4 : 568–571. [Google Scholar]
  21. Marcet PL, Lehmann T, Groner G, Gurtler RE, Kitron U, Dotson EM, 2006. Identification and characterization of microsatellite markers in the Chagas disease vector Triatoma infestans (Heteroptera: Reduviidae). Infect Genet Evol 6 : 32–37. [Google Scholar]
  22. Anderson JM, Lai JE, Doston EM, Cordon-Rosales C, Ponce C, Norris DE, Beard CB, 2002. Identification and characterization of microsatellite markers in the Chagas disease vector Triatoma dimidiata (Hemiptera: Reduviidae). Infect Genet Evol 1 : 243–248. [Google Scholar]
  23. Noireau F, Abad-Franch F, Valente SA, Dias-Lima A, Lopes CM, Cunha V, Valente VC, Palomeque FS, de Carvalho-Pinto CJ, Sherlock I, Aguilar M, Steindel M, Grisard EC, Jurberg J, 2002. Trapping Triatominae in silvatic habitats. Mem Inst Oswaldo Cruz 97 : 61–63. [Google Scholar]
  24. Borges EC, Dujardin JP, Schofield CJ, Romanha AJ, Diotaiuti L, 2000. Genetic variability of Triatoma brasiliensis (Hemiptera: Reduviidae) populations. J Med Entomol 37 : 872–877. [Google Scholar]
  25. Bustamante DM, Monroy C, Menes M, Rodas A, Salazar-Schettino PM, Rojas G, Pinto N, Guhl F, Dujardin JP, 2004. Metric variation among geographic populations of the Chagas vector Triatoma dimidiata (Hemiptera: Reduviidae: Triatominae) and related species. J Med Entomol 41 : 296–301. [Google Scholar]
  26. Landis JR, Koch GG, 1977. The measurement of observer agreement for categorical data. Biometrics 33 : 159–174. [Google Scholar]
  27. Schneider S, Roessli D, Excoffier L, 2001. Arlequin Version 2.001, a Software for Population Genetic Data Analysis. Geneva: Genetics and Biometry Laboratory, University of Geneva.
  28. Weir BS, Cockerham CC, 1984. Estimating F-statistics for the analysis of population structure. Evol Int J Org Evol 38 : 1358–1370. [Google Scholar]
  29. Wright S, 1943. Isolation by distance. Genetics 28 : 114–138. [Google Scholar]
  30. Rannala B, Mountain JL, 1997. Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci U S A 94 : 9197–9201. [Google Scholar]
  31. Cornuet JM, Piry S, Luikart G, Estoup A, Solignac M, 1999. New methods employing multilocus genotypes to select or exclude populations as origin of individuals. Genetics 153 : 1989–2000. [Google Scholar]
  32. Dujardin JP, Bermudez H, Schofield CJ, 1997. The use of morphometrics in entomological surveillance of sylvatic foci of Triatoma infestans in Bolivia. Acta Trop 66 : 145–153. [Google Scholar]
  33. Dujardin JP, Bermudez H, Casini C, Schofield CJ, Tibayrenc M, 1997. Metric differences between silvatic and domestic Triatoma infestans (Hemiptera: Reduviidae) in Bolivia. J Med Entomol 34 : 544–551. [Google Scholar]
  34. Bruford MW, Wayne RK, 1993. Microsatellites and their application to population genetic studies. Curr Opin Genet Dev 3 : 939–943. [Google Scholar]
  35. Breniere SF, Bosseno MF, Vargas F, Yaksic N, Noireau F, Noel S, Dujardin JP, Tibayrenc M, 1998. Smallness of the panmictic unit of Triatoma infestans (Hemiptera: Reduviidae). J Med Entomol 35 : 911–917. [Google Scholar]
  36. Schachter-Broide J, Dujardin JP, Kitron U, Gurtler RE, 2004. Spatial structuring of Triatoma infestans (Hemiptera, Reduviidae) populations from northwestern Argentina using wing geometric morphometry. J Med Entomol 41 : 643–649. [Google Scholar]
  37. Pacheco RS, Almeida CE, Costa J, Klisiowicz DR, Mas-Coma S, Bargues MD, 2003. RAPD analyses and rDNA intergenic-spacer sequences discriminate Brazilian populations of Triatoma rubrovaria (Reduviidae: Triatominae). Ann Trop Med Parasitol 97: 757–768. [Google Scholar]
  38. Borges EC, Dujardin JP, Schofield CJ, Romanha AJ, Diotaiuti L, 2005. Dynamics between sylvatic, peridomestic and domestic populations of Triatoma brasiliensis (Hemiptera: Reduviidae) in Ceara State, Northeastern Brazil. Acta Trop 93 : 119–126. [Google Scholar]
  39. Beaumont MA, Rannala B, 2004. The Bayesian revolution in genetics. Nat Rev Genet 5 : 251–261. [Google Scholar]
  40. Castric V, Bernatchez L, 2004. Individual assignment test reveals differential restriction to dispersal between two salmonids despite no increase of genetic differences with distance. Mol Ecol 13 : 1299–1312. [Google Scholar]
  41. O’Reilly PT, Canino MF, Bailey KM, Bentzen P, 2004. Inverse relationship between F and microsatellite polymorphism in the marine fish, walleye pollock (Theragra chalcogramma): implications for resolving weak population structure. Mol Ecol 13 : 1799–1814. [Google Scholar]
  42. Manel S, Gaggiotti OE, Waples RS, 2005. Assignment methods: matching biological questions with appropriate techniques. Trends Ecol Evol 20 : 136–142. [Google Scholar]
  43. Guzman-Tapia Y, Ramirez-Sierra MJ, Escobedo-Ortegon J, Dumonteil E, 2005. Effect of hurricane Isidore on Triatoma dimidiata distribution and Chagas disease transmission risk in the Yucatan peninsula of Mexico. Am J Trop Med Hyg 73 : 1019–1025. [Google Scholar]
  44. Ramsey JM, Cruz-Celis A, Salgado L, Espinosa L, Ordonez R, Lopez R, Schofield CJ, 2003. Efficacy of pyrethroid insecticides against domestic and peridomestic populations of Triatoma pallidipennis and Triatoma barberi (Reduviidae:Triatominae) vectors of Chagas’ disease in Mexico. J Med Entomol 40 : 912–920. [Google Scholar]
  45. Diotaiuti L, Azeredo BV, Busek SC, Fernandes AJ, 1998. Controle do Triatoma sordida no peridomicílio rural do município de Porteirinha, Minas Gerais, Brasil. Rev Panam Salud Publica 3 : 21–25. [Google Scholar]
  46. Beard CB, Cordon-Rosales C, Durvasula RV, 2002. Bacterial symbionts of the triatominae and their potential use in control of Chagas disease transmission. Annu Rev Entomol 47 : 123–141. [Google Scholar]

Data & Media loading...

  • Received : 10 Jun 2006
  • Accepted : 18 Jan 2007

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error