1921
Volume 76, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

We have previously identified as a gene specific to the subspecies. is a truncated -like telomeric gene transcribed by RNA polymerase II. The TGSGP protein localizes to the flagellar pocket, and exhibits features compatible with a role as surface receptor. Here we show that is physically linked to a truncation of a gene homologous to yeast (), a gene involved in internal vesicular formation. Further analysis indicated that is heterozygous for (), with each allele located on independent chromosome II homologues. In 18 isolates from distinct geographical origins and different hosts, this genomic rearrangement was conserved. The size of the intergenic region between and truncated varied among isolates but was similar in isolates of the same geographical area, and this observation may be used in epidemiology to trace the geographical origin of isolates.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.2007.76.922
2007-05-01
2018-12-18
Loading full text...

Full text loading...

/deliver/fulltext/14761645/76/5/0760922.html?itemId=/content/journals/10.4269/ajtmh.2007.76.922&mimeType=html&fmt=ahah

References

  1. Xong HV, Vanhamme L, Chamekh M, Chimfwembe CE, Van Den Abbeele J, Pays A, Van Meirvenne N, Hamers R, De Baetselier P, Pays E, 1998. A VSG expression site-associated gene confers resistance to human serum in Trypanosoma rhodesiense. Cell 95 : 839–846. [Google Scholar]
  2. Kanmogne GD, Bailey M, Gibson W, 1997. Wide variation in DNA content among Trypanosoma brucei ssp. isolates. Acta Trop 63 : 75–87. [Google Scholar]
  3. Dero B, Zampetti-Bosseler F, Pays E, Steinert M, 1987. The genome and the antigen gene repertoire of Trypanosoma brucei gambiense are smaller than those of T. b. brucei. Mol Biochem Parasitol 26 : 247–256. [Google Scholar]
  4. Pays E, Dekerck P, Van Assel S, Babiker EA, Le Ray D, Van Meirvenne N, Steinert M, 1983. Comparative analysis of a Trypanosoma brucei gambiense antigen gene family and its potential use in sleeping sickness epidemiology. Mol Biochem Parasitol 7 : 63–74. [Google Scholar]
  5. Paindavoine P, Pays E, Laurent M, Geltmeyer Y, Le Ray D, Mehlitz D, Steinert M, 1986. The use of DNA hybridisation and numerical taxonomy in determining relationships between Trypanosoma brucei stocks and subspecies. Parasitology 92 : 31–50. [Google Scholar]
  6. Gray AR, 1972. Variable and agglutinogenic antigens of Trypanosoma brucei gambiense and their distribution among isolates of the trypanosome collected in different places in Nigeria. Trans R Soc Trop Med Hyg 66 : 263–284. [Google Scholar]
  7. Gibson WC, 1986. Will the real Trypanosoma b. gambiense please stand up? Parasitol Today 2 : 255–257. [Google Scholar]
  8. Gibson WC, 2001. Molecular characterization of field isolates of human pathogenic trypanosomes. Trop Med Int Health 6 : 401–406. [Google Scholar]
  9. Magnus E, Vervoort T, Van Meirvenne N, 1978. A card-agglutination test with stained trypanosomes (C.A.T.T.) for the serological diagnosis of T. b. gambiense trypanosomiasis. Ann Soc Belg Med Trop 58 : 169–176. [Google Scholar]
  10. Simarro PP, Ruiz JA, Franco JR, Josenando T, 1999. Attitude towards CATT-positive individuals without parasitological confirmation in the African trypanosomiasis (T.b. gambiense) focus of Quicama (Angola). Trop Med Int Health 4 : 858–861. [Google Scholar]
  11. Garcia A, Jamonneau V, Magnus E, Laveissiere C, Lejon V, N’Guessan P, N’Dri L, Van Meirvenne N, Buscher P, 2000. Follow-up of Card Agglutination Trypanosomiasis Test (CATT)-positive but apparently aparasitaemic individuals in Côte d’Ivoire: evidence for a complex and heterogeneous population. Trop Med Int Health 5 : 786–793. [Google Scholar]
  12. Kanmogne GD, Asonganyi T, Gibson WC, 1996. Detection of Trypanosoma brucei gambiense, in serologically positive but aparasitaemic sleeping-sickness suspects in Cameroon, by PCR. Ann Trop Med Parasitol 90 : 475–483. [Google Scholar]
  13. Enyaru JC, Matovu E, Akol M, Sebikali C, Kyambadde J, Schmidt C, Brun R, Kaminsky R, Ogwal LM, Kansiime F, 1998. Parasitological detection of Trypanosoma brucei gambiense in serologically negative sleeping-sickness suspects from north-western Uganda. Ann Trop Med Parasitol 92 : 845–850. [Google Scholar]
  14. Penchenier L, Simo G, Grebaut P, Nkinin S, Laveissiere C, Herder S, 2000. Diagnosis of human trypanosomiasis, due to Trypanosoma brucei gambiense in central Africa, by the polymerase chain reaction. Trans R Soc Trop Med Hyg 94 : 392–394. [Google Scholar]
  15. Kabiri M, Franco JR, Simarro PP, Ruiz JA, Sarsa M, Steverding D, 1999. Detection of Trypanosoma brucei gambiense in sleeping sickness suspects by PCR amplification of expression-site-associated genes 6 and 7. Trop Med Int Health 4 : 658–661. [Google Scholar]
  16. Truc P, Jamonneau V, Cuny G, Frezil JL, 1999. Use of polymerase chain reaction in human African trypanosomiasis stage determination and follow-up. Bull World Health Organ 77 : 745–748. [Google Scholar]
  17. Kyambadde JW, Enyaru JC, Matovu E, Odiit M, Carasco JF, 2000. Detection of trypanosomes in suspected sleeping sickness patients in Uganda using the polymerase chain reaction. Bull World Health Organ 78 : 119–124. [Google Scholar]
  18. Radwanska M, Chamekh M, Vanhamme L, Claes F, Magez S, Magnus E, de Baetselier P, Buscher P, Pays E, 2002. The serum resistance-associated gene as a diagnostic tool for the detection of Trypanosoma brucei rhodesiense. Am J Trop Med Hyg 67 : 684–690. [Google Scholar]
  19. Radwanska M, Claes F, Magez S, Magnus E, Perez-Morga D, Pays E, Buscher P, 2002. Novel primer sequences for polymerase chain reaction-based detection of Trypanosoma brucei gambiense. Am J Trop Med Hyg 67 : 289–295. [Google Scholar]
  20. Berberof M, Perez-Morga D, Pays E, 2001. A receptor-like flagellar pocket glycoprotein specific to Trypanosoma brucei gambiense. Mol Biochem Parasitol 113 : 127–138. [Google Scholar]
  21. Picozzi K, Fevre EM, Odiit M, Carrington M, Eisler MC, Maudlin I, Welburn SC, 2005. Sleeping sickness in Uganda: a thin line between two fatal diseases. BMJ 331 : 1238–1241. [Google Scholar]
  22. Schlumpberger M, Schaeffeler E, Straub M, Bredschneider M, Wolf DH, Thumm M, 1997. AUT1, a gene essential for autophagocytosis in the yeast Saccharomyces cerevisiae. J Bacteriol 179 : 1068–1076. [Google Scholar]
  23. Sanger F, Nicklen S, Coulson AR, 1977. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74 : 5463–5467. [Google Scholar]
  24. Carrington M, Bulow R, Reinke H, Overath P, 1989. Sequence and expression of the glycosyl-phosphatidylinositol-specific phospholipase C of Trypanosoma brucei. Mol Biochem Parasitol 33 : 289–296. [Google Scholar]
  25. Lanham SM, Godfrey DG, 1970. Isolation of salivarian trypanosomes from man and other mammals using DEAE-cellulose. Exp Parasitol 28 : 521–534. [Google Scholar]
  26. Bernards A, Kooter JM, Michels PA, Moberts RM, Borst P, 1986. Pulsed field gradient electrophoresis of DNA digested in agarose allows the sizing of the large duplication unit of a surface antigen gene in trypanosomes. Gene 42 : 313–322. [Google Scholar]
  27. Schwartz DC, Cantor CR, 1984. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37 : 67–75. [Google Scholar]
  28. Liu AY, Van der Ploeg LH, Rijsewijk FA, Borst P, 1983. The transposition unit of variant surface glycoprotein gene 118 of Trypanosoma brucei. Presence of repeated elements at its border and absence of promoter-associated sequences. J Mol Biol 167 : 57–75. [Google Scholar]
  29. Campbell DA, van Bree MP, Boothroyd JC, 1984. The 5′-limit of transposition and upstream barren region of a trypanosome VSG gene: tandem 76 base-pair repeats flanking (TAA)90. Nucleic Acids Res 12 : 2759–2774. [Google Scholar]
  30. Zuker M, 1989. On finding all suboptimal foldings of an RNA molecule. Science 244 : 48–52. [Google Scholar]
  31. Melville SE, Leech V, Navarro M, Cross GA, 2000. The molecular karyotype of the megabase chromosomes of Trypanosoma brucei stock 427. Mol Biochem Parasitol 111 : 261–273. [Google Scholar]
  32. El-Sayed NM, Ghedin E, Song J, MacLeod A, Bringaud F, Larkin C, Wanless D, Peterson J, Hou L, Taylor S, Tweedie A, Biteau N, Khalak HG, Lin X, Mason T, Hannick L, Caler E, Blandin G, Bartholomeu D, Simpson AJ, Kaul S, Zhao H, Pai G, Van Aken S, Utterback T, Haas B, Koo HL, Umayam L, Suh B, Gerrard C, Leech V, Qi R, Zhou S, Schwartz D, Feldblyum T, Salzberg S, Tait A, Turner CM, Ullu E, White O, Melville S, Adams MD, Fraser CM, Donelson JE, 2003. The sequence and analysis of Trypanosoma brucei chromosome II. Nucleic Acids Res 31 : 4856–4863. [Google Scholar]
  33. Bagnall RD, Ayres KL, Green PM, Giannelli F, 2005. Gene conversion and evolution of Xq28 duplicons involved in recurring inversions causing severe hemophilia A. Genome Res 15 : 214–223. [Google Scholar]
  34. Pays E, Van Assel S, Laurent M, Darville M, Vervoort T, Van Meirvenne N, Steinert M, 1983. Gene conversion as a mechanism for antigenic variation in trypanosomes. Cell 34 : 371–381. [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.2007.76.922
Loading
/content/journals/10.4269/ajtmh.2007.76.922
Loading

Data & Media loading...

  • Received : 06 Dec 2006
  • Accepted : 12 Jan 2007

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error