Volume 76, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


The mechanism by which the salivary gland lysate (SGL) of enables infection remains under investigation. One possibility is that saliva promotes cellular recruitment leading to development of skin lesions. In this study, we investigated leukocyte recruitment induced by SGL, or SGL alone into the peritoneal cavity of BALB/c mice. The administration of with or without SGL induced neutrophil migration six hours after infection. Interestingly, after seven days, the BALB/c mice still had eosinophils and mononuclear cells in their peritoneal cavities. Flow cytometric analysis showed an increase in the CD4+ CD45RB T cell subset (effector or memory cells) compared with the CD4+ CD45RB subset (naive cells). Moreover, the co-injection of with SGL enhanced production of interleukin-10. These results suggest that SGL can facilitate infection by modulating leukocyte recruitment and Th2 cytokine production at the inflammatory focus.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. World Health Organization, 2001. WHO Information by Topics or Disease. Available from http://www.who.int/emc/diseases/leish/index.html.
  2. Killick-Kendrick R, 1978. Recent advances and outstanding problems in the biology of phlebotomine sandflies. A review. Acta Trop 35 : 297–313. [Google Scholar]
  3. Liew FY, O’Donnell CA, 1993. Immunology of leishmaniasis. Adv Parasitol 32 : 161–259. [Google Scholar]
  4. Reed SG, Scott P, 1993. T-cell and cytokine responses in leishmaniasis. Cur Opin Immunol 5 : 524–531. [Google Scholar]
  5. Bogdan C, Vodovotz Y, Paik J, Xie QW, Nathan C, 1993. Traces of bacterial lipopolysaccharide suppress IFN-gamma-induced nitric oxide synthase gene expression in primary mouse macrophages. J Immunol 151 : 301–309. [Google Scholar]
  6. Vouldoukis I, Becherel PA, Riveros-Moreno V, Arock M, da Silva O, Debre P, Mazier D, Mossalayi MD, 1997. Interleukin-10 and interleukin-4 inhibit intracellular killing of Leishmania infantum and Leishmania major by human macrophages by decreasing nitric oxide generation. Eur J Immunol 27 : 860–865. [Google Scholar]
  7. Titus RG, Ribeiro JM, 1988. Salivary gland lysates from the sand fly Lutzomyia longipalpis enhanced Leishmania infectivity. Science 239 : 1306–1308. [Google Scholar]
  8. Ribeiro JMC, Rossignol PA, Spielman A, 1986. Blood-finding strategy of capillary-feeding sandfly, Lutzomyia longipalpis. Comp Biochem Physiol A 83 : 683–686. [Google Scholar]
  9. Qureshi AA, Asahina A, Ohnuma M, Tajima M, Granstein RD, Lerner EA, 1996. Immunomodulatory properties of maxadilan, the vasodilator peptide from sand fly salivary gland extracts. Am J Trop Med Hyg 54 : 665–671. [Google Scholar]
  10. Lima HC, Titus RG, 1996. Effect of sand fly vector saliva on development of cutaneous lesions and the immune response to Leishmania braziliensis in BALB/c mice. Infect Immun 64 : 5442–5445. [Google Scholar]
  11. Hall LR, Titus RG, 1995. Sand fly vector selectively modulates macrophage functions that inhibit killing of L. major and nitric oxide production. J Immunol 155 : 3501–3506. [Google Scholar]
  12. Mbow ML, Bleyenberg JA, Hall LR, Titus RG, 1998. Phlebotomus papatasi sand fly salivary gland lysate down-regulates a Th1, but up-regulates a Th2, response in mice infected with Leishmania major. J Immunol 161 : 5571–5577. [Google Scholar]
  13. Monteiro MC, Nogueira LG, Almeida Souza AA, Ribeiro JM, Silva JS, Cunha FQ, 2005. Effect of salivary gland extract of Leishmania vector, Lutzomyia longipalpis, on leukocyte migration in OVA-induced immune peritonitis. Eur J Immunol 35 : 2424–2433. [Google Scholar]
  14. Belkaid Y, Kamhawi S, Modi G, Valenzuela J, Trauth NN, Rowton E, Ribeiro J, Sacks DL, 1998. Development of natural model of cutaneous leishmaniasis: Powerful effects of vector saliva and saliva preexposure on the long-term outcome of Leishmania major infection in the mouse ear dermis. J Exp Med 188 : 1941–1953. [Google Scholar]
  15. Bogdan C, Rollinghoff M, 1998. The immune response to Leishmania: mechanisms of parasite control and evasion. Int J Parasitol 28 : 121–134. [Google Scholar]
  16. Warburg A, Saraiva E, Lanzaro GC, Titus RG, Neva F, 1994. Saliva of Lutzomyia longipalpis sibling species differs in its composition and capacity to enhance leishmaniasis. Philos Trans R Soc Lond B Biol Sci 345 : 223–230. [Google Scholar]
  17. Donnelly KB, Lima HC, Titus RG, 1998. Histologic characterization of experimental cutaneous leishmaniasis in mice infected with Leishmania braziliensis in the presence or absence of sand fly vector salivary gland lysate. J Parasitol 84 : 97–103. [Google Scholar]
  18. Tacchini-Cottier F, Zweifel C, Belkaid Y, Mukankundiye C, Vasei M, Launois P, Milon G, Louis JA, 2000. An immuno-modulatory function for neutrophils during the induction of a CD4+ Th2 response in BALB/c mice infected with Leishmania major. J Immunol 165 : 2628–2636. [Google Scholar]
  19. Lima GM, Vallochi AL, Silva UR, Bevilacqua EM, Kiffer MM, Abrahamsohn IA, 1998. The role of polymorphonuclear in the resistance to cutaneous leishmaniasis. Immunol Lett 64 : 145–151. [Google Scholar]
  20. van Zandbergen G, Klinger M, Mueller A, Dannenberg S, Gebert A, Solbach W, Laskay T, 2004. Cutting edge: neutrophil granulocyte serves as a vector for Leishmania entry into macrophages. J Immunol 173 : 6521–6525. [Google Scholar]
  21. Chen L, Zhang ZH, Watanabe T, Yamashita T, Kobayakawa T, Kaneko A, Fujiwara H, Sendo F, 2005. The involvement of neutrophils in the resistance to Leishmania major infection in susceptible but not in resistant mice. Parasitol Int 54 : 109–118. [Google Scholar]
  22. Aga E, Katschinski DM, van Zandbergen G, Laufs H, Hansen B, Muller K, Solbach W, Laskay T, 2002. Inhibition of the spontaneous apoptosis of neutrophil granulocytes by the intracellular parasite Leishmania major. J Immunol 169 : 898–905. [Google Scholar]
  23. Huang C, Friend DS, Qiu W-T, Wong GW, Morales G, Hunt J, Stevens RL, 1998. Induction of a selective and persistent extravasation of neutrophils into the peritoneal cavity by tryptase mouse mast cell protease 61. J Immunol 160 : 1910–1919. [Google Scholar]
  24. Yang X, Wang S, Fan Y, Han X, 2000. IL-10 deficiency prevents IL-5 overproduction and eosinophilic inflammation in a murine model of asthma-like reaction. Eur J Immunol 30 : 382–391. [Google Scholar]
  25. Laouini D, Alenius H, Bryce P, Oettgen H, Tsitsikov E, Geha RS, 2003. IL-10 is critical for Th2 responses in a murine model of allergic dermatitis. J Clin Invest 112 : 1058–1066. [Google Scholar]
  26. Sanz MJ, Marinova-Mutafchieva L, Green P, Lobb RR, Feldmann M, Nourshargh S, 1998. IL-4-induced eosinophil accumulation in rat skin is dependent on endogenous TNF-alpha and alpha 4 integrin/VCAM-1 adhesion pathways. J Immunol 160 : 5637–5645. [Google Scholar]
  27. Belkaid Y, Mendez S, Lira R, Kadambi N, Milon G, Sacks D, 2000. A natural model of Leishmania major infection reveals a prolonged “silent” phase of parasite amplification in the skin before the onset of lesion formation and immunity. J Immunol 165 : 969–977. [Google Scholar]
  28. Powrie F, Correa-Oliveira R, Mauze S, Coffman RL, 1994. Regulatory interactions between CD45RBhigh and CD45RBlow CD4+ T cells are important for the balance between protective and pathogenic cell-mediated immunity. J Exp Med 179 : 589–600. [Google Scholar]
  29. Sacks D, Noben-Trauth N, 2002. The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol 2 : 845–858. [Google Scholar]
  30. Norsworthy NB, Sun J, Elnaiem D, Lanzaro G, Soong L, 2004. Sand fly saliva enhances L. amazonensis infection by modulating IL-10 production. Infect Immun 72 : 1240–1247. [Google Scholar]
  31. Noben-Trauth N, Kropf P, Muller I, 1996. Susceptibility to Leishmania major infection in interleukin-4-deficient mice. Science 271 : 987–990. [Google Scholar]
  32. Noben-Trauth N, Paul WE, Sacks DL, 1999. IL-4- and IL-4 receptor-deficient BALB/c mice reveal differences in susceptibility to Leishmania major parasite substrains. J Immunol 162 : 6132–6140. [Google Scholar]
  33. Kamhawi S, Belkaid Y, Modi G, Rowton E, Sacks D, 2000. Protection against cutaneous leishmaniasis resulting from bites of uninfected sand flies. Science 290 : 1351–1354. [Google Scholar]
  34. Belkaid Y, Hoffmann KF, Mendez S, Kamhawi S, Udey MC, Wynn TA, Sacks DL, 2001. The role of interleukin (IL)-10 in the persistence of Leishmania major in the skin after healing and the therapeutic potential of anti-IL-10 receptor antibody for sterile cure. J Exp Med 194 : 1497–1506. [Google Scholar]
  35. Kane MM, Mosser DM, 2001. The role of IL-10 in promoting disease progression in leishmaniasis. J Immunol 166 : 1141–1147. [Google Scholar]
  36. Vannier E, Miller LC, Dinarello CA, 1992. Coordinated anti-inflammatory effects of interleukin 4: interleukin 4 suppresses interleukin 1 production but up-regulates gene expression and synthesis of IL-1 receptor antagonist. Proc Natl Acad Sci USA 89 : 4076–4080. [Google Scholar]
  37. Fiorentino DF, Zlotnik A, Vieira P, Mosmann TR, Howard M, Moore KW, O’Garra A, 1991. IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells. J Immunol 146 : 3444–3451. [Google Scholar]
  38. O’Keefe GM, Nguyen VT, Benveniste EN, 1999. Class II trans-activator and class II MHC gene expression in microglia: modulation by the cytokines TGF-beta, IL-4, IL-13 and IL-10. Eur J Immunol 29 : 1275–1285. [Google Scholar]

Data & Media loading...

  • Received : 15 Mar 2006
  • Accepted : 13 Sep 2006

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error