Volume 76, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Chloroquine is the most commonly used antimalarial in Guinea-Bissau and high doses are routinely prescribed. Blood from 497 patients treated with different doses of chloroquine or amodiaquine were genotyped. and polymorphisms were identified. analysis identified recrudescent infections. The 72–76 haplotypes were CVIET and CVMNK. The 76T prevalence was 23% at day 0 and 96%, 83% and 100% at recrudescence following treatment with 25mg/kg and 50mg/kg of chloroquine and 15mg/kg of amodiaquine respectively. When treating 76T carrying the efficacy of 50 mg/kg and 25mg/kg of chloroquine was 78% and 34% respectively ( = 0.007). The genetic basis of chloroquine resistance is probably the same in Guinea-Bissau as in the rest of Africa. The low 76T prevalence suggests that resistance to normal dose chloroquine does not confer a major advantage to in Bissau and could be a result of treatment with high-dose chloroquine.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Hellgren U, Johansson I, Dias F, Ericsson O, Stenbeck J, Rombo L, 1991. Chloroquine resistant Plasmodium falciparum malaria in Guinea-Bissau. Trans R Soc Trop Med Hyg 85 : 36. [Google Scholar]
  2. Kofoed PE, Co F, Johansson P, Dias F, Cabral C, Hedegaard K, Aaby P, Rombo L, 2002. Treatment of uncomplicated malaria in children in Guinea-Bissau with chloroquine, quinine, and sulfadoxine-pyrimethamine. Trans R Soc Trop Med Hyg 96 : 304–309. [Google Scholar]
  3. Kofoed PE, Lopez F, Johansson P, Sandstrom A, Hedegaard K, Aaby P, Rombo L, 2002. Treatment of children with Plasmodium falciparum malaria with chloroquine in Guinea-Bissau. Am J Trop Med Hyg 67 : 28–31. [Google Scholar]
  4. Kofoed PE, Poulsen A, Co F, Hedegaard K, Aaby P, Rombo L, 2003. No benefits from combining chloroquine with artesunate for three days for treatment of Plasmodium falciparum in Guinea-Bissau. Trans R Soc Trop Med Hyg 97 : 29–33. [Google Scholar]
  5. Kofoed PE, Ursing J, Poulsen A, Rodrigues A, Bergquist Y, Aaby P, Rombo L, 2006. Different doses of amodiaquine and chloroquine for treatment of uncomplicated malaria in children in Guinea-Bissau. Implications for future treatment recommendations. Trans R Soc Trop Med Hyg 101 : 231–238. [Google Scholar]
  6. Jaenson TG, Gomes MJ, Barreto dos Santos RC, Petrarca V, Fortini D, Evora J, Crato J, 1994. Control of endophagic Anopheles mosquitoes and human malaria in Guinea Bissau, West Africa by permethrin-treated bed nets. Trans R Soc Trop Med Hyg 88 : 620–624. [Google Scholar]
  7. Cooper RA, Hartwig CL, Ferdig MT, 2005. Pfcrt is more than the Plasmodium falciparum chloroquine resistance gene: a functional and evolutionary perspective. Acta Trop 94 : 170–180. [Google Scholar]
  8. Wootton JC, Feng X, Ferdig MT, Cooper RA, Mu J, Baruch DI, Magill AJ, Su XZ, 2002. Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum. Nature 418 : 320–323. [Google Scholar]
  9. Johnson DJ, Fidock DA, Mungthin M, Lakshmanan V, Sidhu AB, Bray PG, Ward SA, 2004. Evidence for a central role for Pfcrt in conferring Plasmodium falciparum resistance to diverse antimalarial agents. Mol Cell 15 : 867–877. [Google Scholar]
  10. Babiker HA, Pringle SJ, Abdel-Muhsin A, Mackinnon M, Hunt P, Walliker D, 2001. High-level chloroquine resistance in Sudanese isolates of Plasmodium falciparum is associated with mutations in the chloroquine resistance transporter gene pfcrt and the multidrug resistance gene pfmdr1. J Infect Dis 183 : 1535–1538. [Google Scholar]
  11. Holmgren G, Gil JP, Ferreira PM, Veiga MI, Obonyo CO, Bjorkman A, 2006. Amodiaquine resistant Plasmodium falciparum malaria in vivo is associated with selection of pfcrt 76T and pfmdr1 86Y. Infect Genet Evol 6 : 309–314. [Google Scholar]
  12. Reed MB, Saliba KJ, Caruana SR, Kirk K, Cowman AF, 2000. Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature 403 : 906–909. [Google Scholar]
  13. Djimde A, Doumbo OK, Cortese JF, Kayentao K, Doumbo S, Diourte Y, Dicko A, Su XZ, Nomura T, Fidock DA, Wellems TE, Plowe CV, Coulibaly D, 2001. A molecular marker for chloroquine-resistant falciparum malaria. N Engl J Med 344 : 257–263. [Google Scholar]
  14. Duraisingh MT, Jones P, Sambou I, von Seidlein L, Pinder M, Warhurst DC, 2000. The tyrosine-86 allele of the pfmdr1 gene of Plasmodium falciparum is associated with increased sensitivity to the anti-malarials mefloquine and artemisinin. Mol Biochem Parasitol 108 : 13–23. [Google Scholar]
  15. Veiga IM, Ferreira PE, Bjorkman A, Gil JP, 2006. Multiplex PCR-RFLP methods for pfcrt, pfmdr1 and pfdhfr mutations in Plasmodium falciparum. Mol Cell Probes 20 : 100–104. [Google Scholar]
  16. Cox-Singh J, Singh B, Alias A, Abdullah MS, 1995. Assessment of the association between three pfmdr1 point mutations and chloroquine resistance in vitro of Malaysian Plasmodium falciparum isolates. Trans R Soc Trop Med Hyg 89 : 436–437. [Google Scholar]
  17. Snounou G, Zhu X, Siripoon N, Jarra W, Thaitong S, Brown KN, Viriyakasol S, 1999. Biased distribution of msp1 and msp2 allelic variants in Plasmodium falciparum populations in Thailand. Trans R Soc Trop Med Hyg 93 : 369–374. [Google Scholar]
  18. Daily JP, Roberts C, Thomas SM, Ndir O, Dieng T, Mboup S, Wirth DF, 2003. Prevalence of Plasmodium falciparum pfcrt polymorphisms and in vitro chloroquine sensitivity in Senegal. Parasitology 126 : 401–405. [Google Scholar]
  19. Thomas SM, Ndir O, Dieng T, Mboup S, Wypij D, Maguire JH, Wirth DF, 2002. In vitro chloroquine susceptibility and PCR analysis of pfcrt and pfmdr1 polymorphisms in Plasmodium falciparum isolates from Senegal. Am J Trop Med Hyg 66 : 474–480. [Google Scholar]
  20. Ginsburg H, 2005. Should chloroquine be laid to rest? Acta Trop 96 : 16–23. [Google Scholar]
  21. Laufer MK, Thesing PC, Eddington ND, Masonga R, Dzinjalamala FK, Takala SL, Taylor TE, Plowe CV, 2006. Return of chloroquine antimalarial efficacy in Malawi. N Engl J Med 355 : 1959–1966. [Google Scholar]
  22. Djimde A, Doumbo OK, Steketee RW, Plowe CV, 2001. Application of a molecular marker for surveillance of chloroquine-resistant falciparum malaria. Lancet 358 : 890–891. [Google Scholar]
  23. Tinto H, Sanou B, Dujardin JC, Ouedraogo JB, Van Overmeir C, Erhart A, Van Marck E, Guiquemde TR, D’Alessandro U, 2005. Usefulness of the Plasmodium falciparum chloroquine resistance transporter T76 genotype failure index for the estimation of in vivo chloroquine resistance in Burkina Faso. Am J Trop Med Hyg 73 : 171–173. [Google Scholar]
  24. Adagu IS, Dias F, Pinheiro L, Rombo L, do Rosario V, Warhurst DC, 1996. Guinea-Bissau: association of chloroquine resistance of Plasmodium falciparum with the Tyr86 allele of the multiple drug-resistance gene Pfmdr1. Trans R Soc Trop Med Hyg 90 : 90–91. [Google Scholar]
  25. World Health Organization. Available at: www.who.int/malaria/amdp/amdp_afro.htm. Assessed at 22 March 2007.
  26. Piola P, Fogg C, Bajunirwe F, Biraro S, Grandesso F, Ruzagira E, Babigumira J, Kigozi I, Kyomuhendo J, Ferradini L, Taylor W, Checchi F, Guthmann JP, 2005. Supervised versus unsupervised intake of six-dose artemether-lumefantrine for treatment of acute, uncomplicated Plasmodium falciparum malaria in Mbarara, Uganda: a randomised trial. Lancet 365 : 1467–1473. [Google Scholar]
  27. Sisowath C, Strömberg J, Mårtensson A, Msellem M, Obondo C, Bjorkman A, Gil JP, 2005. In vivo selection of Plasmodium falciparum pfmdr1 86N coding alleles by artemether-lumefantrine (Coartem). J Infect Dis 91 : 1014–1017. [Google Scholar]

Data & Media loading...

  • Received : 25 Aug 2006
  • Accepted : 13 Feb 2007

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error