Volume 76, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Daily survival rates, life expectancy, dispersal, and parity are important components of vectorial capacity of . These parameters were estimated for mosquito populations from a slum and a suburban district in Rio de Janeiro, during the wet and dry seasons in 2005. In each mark-release-recapture experiment, three cohorts of dust-marked females were released. Recaptures were carried out daily in randomly selected houses, using backpack aspirators, adult traps, and sticky ovitraps. Recapture varied between 6.81% and 14.26%. Daily survival was estimated by fitting two alternative models: exponential and nonlinear models with correction for the removal of individuals. Slum area presented higher survival and parity rates (68.5%). Dispersal rates were higher in the suburban area, where a maximum dispersal of 363 m was observed. Results suggest intense risk of dengue epidemic, particularly in the urban area.


Article metrics loading...

Loading full text...

Full text loading...



  1. Luz PM, Codeço CT, Massad E, Struchiner CJ, 2003. Uncertainties regarding dengue modeling in Rio de Janeiro, Brazil. Mem Inst Oswaldo Cruz 87 : 871–878.
  2. Garrett-Jones C, 1964. The human blood index of malaria vectors in relation to epidemiological assessment. Bull Wld Hlth Org 30 : 241–261.
  3. Kuno G, 1995. Review of the factors modulating dengue transmission. Epidemiol Rev 17 : 321–335.
  4. World Health Organization, 1999. Prevention and Control of Dengue and Dengue Hemorrhagic Fever. New Delhi: World Health Organization.
  5. Harrington LC, Scott TW, Lerdthusnee K, Coleman RC, Costero A, Clark GG, Jones JJ, Kitthawee S, Kittayapong P, Sithiprasasna R, Edman JD, 2005. Dispersal of the dengue vector Aedes aegypti within and between rural communities. Am J Trop Med Hyg 72 : 209–220.
  6. Reiter P, Amador MA, Anderson RA, Clark GG, 1995. Short report: Dispersal of Aedes aegypti in an urban area after blood feeding as demonstrated by rubidium-marked eggs. Am J Trop Med Hyg 52 : 177–179.
  7. Honório NA, Silva WC, Leite PJ, Gonçalves JM, Lounibos LP, Lourenço-de-Oliveira R, 2003. Dispersal of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in an urban endemic dengue area in the State of Rio de Janeiro, Brazil. Mem Inst Oswaldo Cruz 98 : 191–198.
  8. Forattini OP, 1962. Entomologia Médica, vol. 1. Sao Paulo: Universidade de São Paulo.
  9. Edman JD, Scott TW, Costero A, Morrison AC, Harrington LC, Clark GG, 1998. Aedes aegypti (Diptera: Culicidae) movement influenced by availability of oviposition sites. J Med Entomol 35 : 578–583.
  10. Maciel-de-Freitas R, Brocki-Neto R, Gonçalves JM, Codeço CT, Lourenço-de-Oliveira R, 2006. Movement of dengue vectors between the human modified environment and an urban forest in Rio de Janeiro. J Med Entomol 43 : 1112–1120.
  11. Braks MAH, Honorio NA, Lourenço-de-Oliveira R, Juliano AS, Lounibos LP, 2003. Convergent habitat segregation of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in southeastern Brazil and Florida. J Med Entomol 40 : 785–794.
  12. Lourenço-de-Oliveira R, Castro MG, Braks MAH, Lounibos LP, 2004. The invasion of urban forests by dengue vectors in Rio de Janeiro. J Vector Ecol 29 : 94–100.
  13. Cunha SP, Alves JRC, Lima MM, Duarte JR, Barros LCV, Silva JL, Gammaro AT, Monteiro Filho OS, Wanzeler AR, 2002. Presença de Aedes aegypti em bromeliaceae e depósitos com plantas no município do Rio de Janeiro. Rev Saúde Públ 36 : 244–245.
  14. Fundaçan Instituto de Desenvolvimento Econômico e Social de Rio de Janiero, 1978. Indicadores Climatológicos do Rio de Janeiro. Série SIPE. Rio de Janeiro: Fundação Instituto de Desenvolvimento Econômico e Social do Rio de Janeiro.
  15. Consoli RAGB, Lourenço-de-Oliveira R, 1994. Principais Mosquitos de Importância Sanitária do Brasil. Rio de Janeiro: Fiocruz.
  16. Clark GG, Seda H, Gubler DJ, 1994. Use of the “CDC backpack aspirator” for surveillance of Aedes aegypti in San Juan, Puerto Rico. J Am Mosq Control Assoc 10 : 119–124.
  17. Maciel-de-Freitas R, Eiras AE, Lourenço-de-Oliveira R, 2006. Field evaluation of effectiveness of the BG-Sentinel, a new trap for capturing adult Aedes aegypti (Diptera: Culicidae). Mem Inst Oswaldo Cruz 101 : 321–325.
  18. Kröckel U, Rose A, Eiras AE, Geier M, 2006. New tools for surveillance of adult yellow fever mosquitoes: comparison of trap catches with human landing rates in an urban environment. J Am Mosq Control Assoc 22 : 229–238.
  19. Service MW, 1993. Mosquito Ecology: Field Sampling Methods. Second edition. London: Elsevier Applied Science, 988 pp.
  20. Dibo MR, Chiaravalloti-Neto F, Battigaglia M, Mondini A, Favaro EA, Barbosa AAC, Glasser CM, 2005. Identification of the best ovitraps installation sites for gravid Aedes (Stegomyia) aegypti in residences in Mirassol, sate of São Paulo, Brazil. Mem Inst Oswaldo Cruz 100 : 339–343.
  21. Gillies MT, 1961. Studies on the dispersion and survival of Anopheles gambiae Giles in East Africa, by means of marking and releasing experiments. Bull Entomol Res 52 : 99–127.
  22. Buonaccorsi JP, Harrington LC, Edman JD, 2003. Estimation and comparison of mosquito survival rates with release-recapture-removal data. J Med Entomol 40 : 6–17.
  23. Clements AN, Paterson GD, 1981. The analysis of mortality and survival rates in wild populations of mosquitoes. J Appl Ecol 18 : 373–399.
  24. Harrington LC, Buonaccorsi JP, Edman JD, Costero A, Kittayapong P, Clark GG, Scott TW, 2001. Analysis of survival of young and old Aedes aegypti (Diptera: Culicidae) from Puerto Rico and Thailand. J Med Entomol 38 : 537–547.
  25. R Development Core Team, 2005. R 2.2.0 A language and environment for statistical computing. http://www.R-project.org.
  26. Niebylski ML, Craig GB, 1994. Dispersal and survival of Aedes albopictus at a scrap tire yard in Missouri. J Am Mosq Control Assoc 10 : 339–343.
  27. Lillie TH, Marquardt WC, Jones RH, 1981. The flight range of Culicoides mississippiensis (Diptera: Ceratopogonidae). Can Entomol 113 : 419–426.
  28. Morris CD, Larson VL, Lounibos LP, 1991. Measuring mosquito dispersal for control programs. J Am Mosq Control Assoc 7 : 608–615.
  29. Christophers SR, 1911. The development of the egg follicle in anophelines. Paludism 2 : 73–78.
  30. Detinova TS, 1962. Age grouping methods in Diptera of medical importance. W.H.O. Monograph Ser. No. 47 : 216.
  31. Zar JH, 1999. Biostatistical Analysis. Fourth edition. London: Prentice Hall.
  32. Quinn GP, Keough MJ, 2002. Experimental Design and Data Analysis for Biologists. Cambridge: Cambridge University Press.
  33. Scott TW, Clark GG, Lorenz LH, Amerasinghe PH, Reiter P, Edman JD, 1993. Detection of multiple blood feeding in Aedes aegypti (Diptera: Culicidae) during a single gonotrophic cycle using a histologic technique. J Med Entomol 30 : 94–99.
  34. Edman JD, Strickman D, Kittayapong P, Scott TW, 1992. Female Aedes aegypti (Diptera: Culicidae) in Thailand rarely feed on sugar. J Med Entomol 29 : 1035–1038.
  35. Secretaria de Estado de Saúde do Rio de Janeiro (SES/RJ), Casos de incidência de dengue por bairro e mês no município do Rio de Janeiro—2005. http://www.saude.rio.rj.gov.br/saude/pubsms/media/tab_incidengue2005.htm
  36. Secretaria de Estado de Saúde do Rio de Janeiro (SES/RJ), Casos de incidência de dengue por bairro e mês no município do Rio de Janeiro—2006. http://www.saude.rio.rj.gov.br/saude/pubsms/media/tab_incidengue2006.htm
  37. Muir LE, Kay BH, 1998. Aedes aegypti survival and dispersal estimated by mark-release-recapture in northern Australia. Am J Trop Med Hyg 58 : 277–282.
  38. Watson TM, Kay BH, 1999. Vector competence of Aedes notoscriptus (Diptera: Culicidae) for Barmah Forest virus and of this species and Aedes aegypti (Diptera: Culicidae) for dengue 1-4 viruses in Queensland, Australia. J Med Entomol 36 : 508–514.
  39. Focks DA, Haile DG, Daniels E, Mount GA, 1993. Dynamic life table model for Aedes aegypti (Diptera: Culicidae): Analysis of the literature and model development. J Med Entomol 30 : 1003–1017.
  40. Focks DA, Haile DG, Daniels E, Mount GA, 1993. Dynamic life table model for Aedes aegypti (Diptera: Culicidae): Simulation results and validation. J Med Entomol 30 : 1018–1028.
  41. Focks DA, Daniels E, Haile DG, Keesling JE, 1995. A simulation model of the epidemiology of urban dengue fever: Literature analysis, model development, preliminary validation, and samples of simulation results. Am J Trop Med Hyg 53 : 489–506.
  42. Trpis M, Hausermann W, 1986. Dispersal and other population parameters of Aedes aegypti in an African village and their possible significance in epidemiology of vector-borne diseases. Am J Trop Med Hyg 35 : 1263–1279.
  43. Lourenço-de-Oliveira R, Vazeille M, Filippis AMB, Failloux AB, 2004. Aedes aegypti in Brazil: Genetically differentiated populations with high susceptibility to dengue and yellow fever viruses. Trans R Soc Trop Med Hyg 98 : 43–54.
  44. Braga IA, Lima JBP, Soares SS, Valle D, 2004. Aedes aegypti resistance to temephos during 2001 in several municipalities in the states of Rio de Janeiro, Sergipe and Alagoas, Brazil. Mem Inst Oswaldo Cruz 99 : 199–203.
  45. Da-Cunha MP, Lima JBP, Brogdon WG, Moya GE, Valle D, 2005. Monitoring of resistance to the pyrethroid cypermethrin in Brazilian Aedes aegypti (Diptera: Culicidae) populations collected between 2001 and 2003. Mem Inst Oswaldo Cruz 10 : 441–444.

Data & Media loading...

  • Received : 26 Jan 2006
  • Accepted : 24 Jun 2006

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error