1921
Volume 76, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Randomly amplified polymorphic DNA (RAPD) analysis was performed to infer the magnitude and pattern of genetic differentiation among () populations from two ecologic regions in southeast Brazil where transmission of American cutaneous leishmaniasis (ACL) by . () reflects distinct eco-epidemiologic features. Two hundred thirty-five bands from six primers were analyzed for genetic variation within and between sand fly populations. A lower level of intrapopulational variability was found in domestic sand flies (compared with the peridomestic population). Gene flow F estimates indicated homogeneity in the studied population, with limited population substructuring, but with a tendency of sand fly vectors to form clusters by micro-habitat (domestic and peridomestic). The level of genetic structuring of population from each ecologic region is distinct and may reflect association or independence between the domestic and the peridomestic habitats in rural and periurban areas, respectively, both reflecting distinct characteristics of the transmission cycle of ACL.

Loading

Article metrics loading...

/content/journals/10.4269/ajtmh.2007.76.559
2007-03-01
2017-11-20
Loading full text...

Full text loading...

/deliver/fulltext/14761645/76/3/0760559.html?itemId=/content/journals/10.4269/ajtmh.2007.76.559&mimeType=html&fmt=ahah

References

  1. Falqueto A, Sessa PA, Ferreira AL, Vieira VP, Santos CB, Varejao JB, Cupolillo E, Porrozzi R, Carvalho-Paes LE, Grimaldi JG, 2003. Epidemiological and clinical features of Leishmania (Viannia) braziliensis American cutaneous and mucocutaneous leishmaniasis in the State of Espirito Santo, Brazil. Mem Inst Oswaldo Cruz 98 : 1003–1010.
  2. Falqueto A, Coura JR, Barros GC, Grimaldi FG, Sessa PA, Carias VR, de Jesus AC, de Alencar JT, 1986. Participation of the dog in the cycle of transmission of cutaneous leishmaniasis in the municipality of Viana, State of Espírito Santo, Brazil. Mem Inst Oswaldo Cruz 81 : 155–163.
  3. Falqueto A, Sessa PA, Varejao JB, Barros GC, Momen H, Grimaldi JG, 1991. Leishmaniasis due to Leishmania braziliensis in Espirito Santo State, Brazil. Further evidence on the role of dogs as a reservoir of infection for humans. Mem Inst Oswaldo Cruz 86 : 499–500.
  4. Ferreira AL, Sessa PA, Varejao JB, Falqueto A, 2001. Distribution of sand flies (Diptera: Psychodidae) at different altitudes in an endemic region of American cutaneous leishmaniasis in the State of Espirito Santo, Brazil. Mem Inst Oswaldo Cruz 96 : 1061–1067.
  5. Grimaldi G Jr, Tesh RB, 1993. Leishmaniases of the New World: current concepts and implications for future research. Clin Microbiol Rev 6 : 230–250.
  6. Gomes AC, Santos JL, Galati EA, 1986. Ecological aspects of American cutaneous leishmaniasis. 4. Observations on the endophilic behavior of the sandfly and the vectorial role of Psychodopygus intermedius in the Ribeira Valley region of the S. Paulo State, Brazil. Rev Saude Publica 20 : 280–287.
  7. Rangel EF, Azevedo AC, Andrade CA, Souza NA, Wermelinger ED, 1990. Studies on sandfly fauna (Diptera: Psychodidae) in a foci of cutaneous leishmaniasis in Mesquita, Rio de Janeiro State, Brazil. Mem Inst Oswaldo Cruz 85 : 39–45.
  8. Mayo RC, Casanova C, Mascarini LM, Pignatti MG, Rangel O, Galati EA, Wanderley DM, Correa FM, 1998. Sandflies (Diptera, Psychodidae) from the transmission area for American cutaneous leishmaniasis in the town of Itupeva, the southeastern region of Sao Paulo state, Brazil. Rev Soc Bras Med Trop 31 : 339–345.
  9. Cupolillo E, Brahim LR, Toaldo CB, Oliveira-Neto MP, de Brito ME, Falqueto A, de Farias NM, Grimaldi G Jr, 2003. Genetic polymorphism and molecular epidemiology of Leishmania (Viannia) braziliensis from different hosts and geographic areas in Brazil. J Clin Microbiol 41 : 3126–3132.
  10. Campbell-Lendrum D, Pinto MC, Davies C, 1999. Is Lutzomyia intermedia (Lutz & Neiva, 1912) more endophagic than Lutzomyia whitmani (Antunes & Coutinho, 1939) because it is more attracted to light? Mem Inst Oswaldo Cruz 94 : 21–22.
  11. Campbell-Lendrum DH, Pinto MC, Brandao SP, De Souza AA, Ready PD, Davies CR, 1999. Experimental comparison of anthropophily between geographically dispersed populations of Lutzomyia whitmani (Diptera: Psychodidae). Med Vet Entomol 13 : 299–309.
  12. Campbell-Lendrum DH, Brandao SP, Ready PD, Davies CR, 1999. Host and/or site loyalty of Lutromyia whitmani (Diptera: Psychodidae) in Brazil. Med Vet Entomol 13 : 209–211.
  13. Campbell-Lendrum DH, Brandao SP, Pinto MC, Vexenat A, Ready PD, Davies CR, 2000. Domesticity of Lutzomyia whitmani (Diptera: Psychodidae) populations: field experiments indicate behavioral differences. Bull Entomol Res 90 : 41–48.
  14. Soares RP, Barron T, McCoy-Simandle K, Svobodova M, Warburg A, Turco SJ, 2004. Leishmania tropica: intraspecific polymorphisms in lipophosphoglycan correlate with transmission by different Phlebotomus species. Exp Parasitol 107 : 105–114.
  15. Ready P, 2000. Sand fly evolution and its relationship to Leishmania transmission. Mem Inst Oswaldo Cruz 95 : 589–590.
  16. Meneses CR, Cupolillo E, Monteiro F, Rangel EF, 2005. Microgeographical variation among male populations of the sandfly, Lutzomyia (Nyssomyia) intermedia, from an endemic area of American cutaneous leishmaniasis in the state of Rio de Janeiro, Brazil. Med Vet Entomol 19 : 38–47.
  17. Welsh J, McClelland M, 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18 : 7213–7218.
  18. Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV, 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18 : 6531–6535.
  19. Ayres CF, Melo-Santos MA, Sole-Cava AM, Furtado AF, 2003. Genetic differentiation of Aedes aegypti (Diptera: Culicidae), the major dengue vector in Brazil. J Med Entomol 40 : 430–435.
  20. Kim KS, Sappington TW, 2004. Genetic structuring of boll weevil populations in the US based on RAPD markers. Insect Mol Biol 13 : 293–303.
  21. Armstrong KA, Wratten SD, 1996. The use of DNA analysis and the polymerase chain reaction in the study of introduced pests in New Zealand. Symondson WO, Liddell JE, eds The Ecology of Agricultural Pests: Biochemical Approaches. London: Chapman and Hall, 231–263.
  22. Brown RJ, Malcolm CA, Mason PL, Nichols RA, 1997. Genetic differentiation between and within strains of the saw-toothed grain beetle, Oryzaephilus surinamensis (Coleoptera: Silvanidae) at RAPD loci. Insect Mol Biol 6 : 285–289.
  23. Pearson CVM, Rogers AD, Sheader M, 2002. The genetic structure of the rare lagoonal sea anemone, Nematostella vectensis Stephenson (Cnidaria; Anthozoa) in the United Kingdom based on RAPD analysis. Mol Ecol 11 : 2285–2293.
  24. Vaughn TT, Antolin MF, 1998. Population genetics of an opportunistic parasitoid in an agricultural landscape. Heredity 80 : 152–162.
  25. Ryan L, Phillips P, Milligan P, Lainson R, Mollineux DH, Shaw JJ, 1996. Separation of Psychodopygus wellcomei and P. complexa (Diptera: Psychodidae) by cuticular hydrocarbonanalysis. Acta Trop 43 : 85–89.
  26. Young DG, Duncan MA, 1994. Guide to the identification and geographic distribution of Lutzomyia sand flies in Mexico, the West Indies, Central and South America (Diptera: Psychodidae). Mem Am Entomol Inst 54 : 1–881.
  27. Marcondes CB, 1996. A redescription of Lutzomyia (Nyssomyia) intermedia (Lutz & Neiva, 1912), and resurrection of Lutzomyia neivai (Pinto, 1926) (Diptera, Psychodidae, Phlebotominae). Mem Inst Oswaldo Cruz 91 : 457–462.
  28. Collins FH, Mendez MA, Rasmussen MO, Mehaffey PC, Besansky NJ, Finnerty V, 1987. A ribosomal RNA gene probe differentiates member species of the Anopheles gambiae complex. Am J Trop Med Hyg 37 : 37–41.
  29. Rohlf FJ, 1992. NTSYS, Version 2.11S—PC Numerical Taxonomy and Multivariate Analysis System. New York: Exeter Software.
  30. Rodrigues FM, Diniz-Fiho JAF, Bataus LA, 2002. Hypothesis testing of genetic similarity based on RAPD data using Mantel tests and model matrices. Genet Mol Biol 25 : 435–439.
  31. Wright S, 1978. Evolution and the Genetics of Population: Variability among and within Natural Populations. Volume 4. Chicago: University of Chicago Press.
  32. Lynch M, Milligan BG, 1994. Analysis of population genetic structure with RAPD markers. Mol Ecol 3 : 91–99.
  33. Miller M, 1997. Tools for Population Genetic Analyses (TFPGA) 1.3: A Windows Program for the Analysis of Allozyme and Molecular Population Genetic Data. Computer software distributed by author.
  34. Weir BS, Cockerham CC, 1984. Estimating F-statistics for the analysis of population structure. Evol Int J Org Evolution 38 : 1358–1370.
  35. Excoffier L, Smouse PE, Quattro JM, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial-DNA restriction data. Genetics 131 : 479–491.
  36. Schneider S, Kueffer JM, Roessli D, Excoffier L, 1997. Arlequin, Version 1.1: A Software for Population Genetic Data Analysis. Geneva: Genetics and Biometry Laboratory, University of Geneva.
  37. Lainson R, 1983. The American leishmaniases: some observations on their ecology and epidemiology. Trans R Soc Trop Med Hyg 77 : 569–596.
  38. Cupolillo E, Momen H, Grimaldi G Jr, 1998. Genetic diversity in natural populations of New World Leishmania. Mem Inst Oswaldo Cruz 93 : 663–668.
  39. Marquez LM, Lampo M, Rinaldi M, Lau P, 2001. Gene flow between natural and domestic populations of Lutzomyia longipalpis (Diptera: Psychodidae) in a restricted focus of American visceral leishmaniasis in Venezuela. J Med Entomol 38 : 12–16.
  40. Lainson R, Dye C, Shaw JJ, Macdonald DW, Courtenay O, Souza AA, Silveira FT, 1990. Amazonian visceral leishmaniasis; distribution of the vector Lutzomyia longipalpis (Lutz and Neiva) in relation to the fox Cerdocyon-Thous (Linn) and the efficiency of this reservoir host as a source of infection. Mem Inst Oswaldo Cruz 85 : 135–137.
  41. Clark AG, Lanigan CM, 1993. Prospects for estimating nucleotide divergence with RAPDs. Mol Biol Evol 10 : 1096–1111.
  42. Marcondes CB, Lozovei AL, Falqueto A, Brazil RP, Galati EAB, Aguiar GM, Souza NA, 1999. Influence of altitude, latitude and season of collection (Bergmann’s rule) on the dimensions of Lutzomyia intermedia (Lutz & Neiva, 1912) (Diptera, Psychodidae, Phlebotominae). Mem Inst Oswaldo Cruz 94 : 693–700.
  43. Dujardin JP, Tibayrenc M, Venegas E, Maldonado L, Desjeux P, Ayala FJ, 1987. Isozyme evidence of lack of speciation between wild and domestic Triatoma infestans (Heteroptera, Reduviidae) in Bolivia. J Med Entomol 24 : 40–45.
  44. Dujardin JP, Torrez EM, Le Pont F, Hervas D, Sossa D, 1997. Isozymic and metric variation in the Lutzomyia longipalpis complex. Med Vet Entomol 11 : 394–400.
  45. Munstermann LE, Morrison AC, Ferro C, Pardo R, Torres M, 1998. Genetic structure of local populations of Lutzomyia longipalpis (Diptera: Psychodidae) in central Colombia. J Med Entomol 35 : 82–89.
  46. Ishikawa EA, Silveira FT, Magalhaes AL, Guerra junior RB, Melo MN, Gomes R, Silveira TG, Shaw JJ, 2002. Genetic variation in populations of Leishmania species in Brazil. Trans R Soc Trop Med Hyg 96 : 111–121.
  47. Vallejo GA, Guhl F, Carranza JC, Moreno J, Triana O, Grisard EC, 2003. Parity between kinetoplast DNA and mini-exon gene sequences supports either clonal evolution or speciation in Trypanosoma rangeli strains isolated from Rhodnius colombiensis, R. pallescens and R. prolixus in Colombia. Infect Genet Evol 3 : 39–45.
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.2007.76.559
Loading
/content/journals/10.4269/ajtmh.2007.76.559
Loading

Data & Media loading...

  • Received : 11 Apr 2006
  • Accepted : 24 Aug 2006

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error