1921
Volume 76, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Melanization is an immune response of mosquitoes that could potentially limit development. That mosquitoes rarely melanize in natural populations might result from immuno-suppression by the parasite, as has been observed in mosquitoes infected by . We tested this possibility in mosquitoes infected by by comparing the ability to melanize a Sephadex bead of infected mosquitoes, of mosquitoes that had fed on infectious blood without becoming infected, and of control mosquitoes fed on uninfected blood. Rather than being immuno-suppressed, infected mosquitoes tended to have a stronger melanization response than mosquitoes in which the infection failed and than control mosquitoes, possibly because of immune activation after previous exposure to invading parasites. This finding suggests that relies on immune evasion rather than immuno-suppression to avoid being melanized and confirms that natural malaria transmission systems differ from laboratory models of mosquito– interactions.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.2007.76.475
2007-03-01
2019-01-16
Loading full text...

Full text loading...

/deliver/fulltext/14761645/76/3/0760475.html?itemId=/content/journals/10.4269/ajtmh.2007.76.475&mimeType=html&fmt=ahah

References

  1. Christophides GK, 2005. Transgenic mosquitoes and malaria transmission. Cell Microbiol 7 : 325–333. [Google Scholar]
  2. Richman A, Kafatos FC, 1996. Immunity to eukaryotic parasites in vector insects. Curr Opin Immunol 8 : 14–19. [Google Scholar]
  3. Tahar R, Boudin C, Thiéry I, Bourgouin C, 2002. Immune response of Anopheles gambiae to the early sporogonic stages of the human malaria parasite Plasmodium falciparum. EMBO J 21 : 6673–6680. [Google Scholar]
  4. Michel K, Kafatos FC, 2005. Mosquito immunity against Plasmodium. Insect Biochem Mol Biol 35 : 677–689. [Google Scholar]
  5. Gouagna LC, Mulder B, Noubissi E, Tchuinkam T, Verhave JP, Boudin C, 1998. The early sporogonic cycle of Plasmodium falciparum in laboratory-infected Anopheles gambiae: An estimation of parasite efficacy. Trop Med Int Health 3 : 21–28. [Google Scholar]
  6. Vaughan JA, Noden BH, Beier JC, 1992. Population dynamics of Plasmodium falciparum sporogony in laboratory-infected Anopheles gambiae. J Parasitol 78 : 716–724. [Google Scholar]
  7. Christensen BM, Li J, Chen CC, Nappi AJ, 2005. Melanization immune responses in mosquito vectors. Trends Parasitol 21 : 192–199. [Google Scholar]
  8. Collins FH, Sakai RK, Vernick KD, Paskewitz S, Seeley DC, Miller LH, Collins WE, Campbell CC, Gwadz RW, 1986. Genetic selection of a Plasmodium-refractory strain of the malaria vector Anopheles gambiae. Science 234 : 607–610. [Google Scholar]
  9. Paskewitz SM, Brown MR, Lea AO, Collins FH, 1988. Ultra-structure of the encapsulation of Plasmodium cynomolgi (B strain) on the midgut of a refractory strain of Anopheles gambiae. J Parasitol 74 : 432–439. [Google Scholar]
  10. Osta MA, Christophides GK, Kafatos FC, 2004. Effects of mosquito genes on Plasmodium development. Science 303 : 2030–2032. [Google Scholar]
  11. Michel K, Budd A, Pinto S, Gibson TJ, Kafatos FC, 2005. Anopheles gambiae SRPN2 facilitates midgut invasion by the malaria parasite Plasmodium berghei. EMBO Rep 6 : 891–897. [Google Scholar]
  12. Volz J, Osta MA, Kafatos FC, Muller HM, 2005. The roles of two clip domain serine proteases in innate immune responses of the malaria vector Anopheles gambiae. J Biol Chem 280 : 40161–40168. [Google Scholar]
  13. Abraham EG, Pinto SB, Ghosh A, Vanlandingham DL, Budd A, Higgs S, Kafatos FC, Jacobs-Lorena M, Michel K, 2005. An immune-responsive serpin, SRPN6, mediates mosquito defense against malaria parasites. Proc Natl Acad Sci USA 102 : 16327–16332. [Google Scholar]
  14. Schwartz A, Koella JC, 2002. Melanization of Plasmodium falciparum and C-25 sephadex beads by field-caught Anopheles gambiae (Diptera: Culicidae) from southern Tanzania. J Med Entomol 39 : 84–88. [Google Scholar]
  15. Adini A, Warburg A, 1999. Interaction of Plasmodium gallinaceum ookinetes and oocysts with extracellular matrix proteins. Parasitology 119 : 331–336. [Google Scholar]
  16. Li X, Webb BA, 1994. Apparent functional role for a cysteine-rich polydnavirus protein in suppression of the insect cellular immune response. J Virol 68 : 7482–7489. [Google Scholar]
  17. Rosqvist R, Forsberg A, Rimpilainen M, Bergman T, Wolf-Watz H, 1990. The cytotoxic protein YopE of Yersinia obstructs the primary host defence. Mol Microbiol 4 : 657–667. [Google Scholar]
  18. Rosqvist R, Forsberg A, Wolf-Watz H, 1991. Intracellular targeting of the Yersinia YopE cytotoxin in mammalian cells induces actin microfilament disruption. Infect Immun 59 : 4562–4569. [Google Scholar]
  19. Bouarab K, Melton R, Peart J, Baulcombe D, Osbourn A, 2002. A saponin-detoxifying enzyme mediates suppression of plant defences. Nature 418 : 889–892. [Google Scholar]
  20. Lindmark H, Johansson KC, Stoven S, Hultmark D, Engstrom Y, Soderhall K, 2001. Enteric bacteria counteract lipopolysaccharide induction of antimicrobial peptide genes. J Immunol 167 : 6920–6923. [Google Scholar]
  21. Boëte C, Paul RE, Koella JC, 2002. Reduced efficacy of the immune melanization response in mosquitoes infected by malaria parasites. Parasitology 125 : 93–98. [Google Scholar]
  22. Boëte C, Paul RE, Koella JC, 2004. Direct and indirect immunosuppression by a malaria parasite in its mosquito vector. Proc R Soc Lond B Biol Sci 271 : 1611–1615. [Google Scholar]
  23. Boëte C, 2005. Malaria parasites in mosquitoes: Laboratory models, evolutionary temptation and the real world. Trends Parasitol 21 : 445–447. [Google Scholar]
  24. Paskewitz S, Riehle MA, 1994. Response of Plasmodium refractory and susceptible strains of Anopheles gambiae to inoculated Sephadex beads. Dev Comp Immunol 18 : 369–375. [Google Scholar]
  25. Lensen AH, Van Gemert GJ, Bolmer MG, Meis JF, Kaslow D, Meuwissen JH, Ponnudurai T, 1992. Transmission blocking antibody of the Plasmodium falciparum zygote/ookinete surface protein Pfs25 also influences sporozoite development. Parasite Immunol 14 : 471–479. [Google Scholar]
  26. Vermeulen AN, van Deursen J, Brakenhoff RH, Lensen TH, Ponnudurai T, Meuwissen JH, 1986. Characterization of Plasmodium falciparum sexual stage antigens and their biosynthesis in synchronised gametocyte cultures. Mol Biochem Parasitol 20 : 155–163. [Google Scholar]
  27. Tchuinkam T, Mulder B, Dechering K, Stoffels H, Verhave JP, Cot M, Carnevale P, Meuwissen JH, Robert V, 1993. Experimental infections of Anopheles gambiae with Plasmodium falciparum of naturally infected gametocyte carriers in Cameroon: Factors influencing the infectivity to mosquitoes. Trop Med Parasitol 44 : 271–276. [Google Scholar]
  28. Koella JC, Lyimo EO, 1996. Variability in the relationship between weight and wing length of Anopheles gambiae (Diptera: Culicidae). J Med Entomol 33 : 261–264. [Google Scholar]
  29. Rigaud T, Moret Y, 2003. Differential phenoloxidase activity between native and invasive gammarids infected by local acan-thocephalans: Differential immunosuppression? Parasitology 127 : 571–577. [Google Scholar]
  30. Koella JC, Boëte C, 2003. A model for the coevolution of immunity and immune evasion in vector-borne diseases with implications for the epidemiology of malaria. Am Nat 161 : 698–707. [Google Scholar]
  31. Cotter SC, Kruuk LE, Wilson K, 2004. Costs of resistance: Genetic correlations and potential trade-offs in an insect immune system. J Evol Biol 17 : 421–429. [Google Scholar]
  32. Riehle MM, Markianos K, Niare O, Xu J, Li J, Toure AM, Podiougou B, Oduol F, Diawara S, Diallo M, Coulibaly B, Ouatara A, Kruglyak L, Traore SF, Vernick KD, 2006. Natural malaria infection in Anopheles gambiae is regulated by a single genomic control region. Science 312 : 577–579. [Google Scholar]
  33. Lambrechts L, Vulule JM, Koella JC, 2004. Genetic correlation between melanization and antibacterial immune responses in a natural population of the malaria vector Anopheles gambiae. Evolution Int J Org Evolution 58 : 2377–2381. [Google Scholar]
  34. Baton LA, Ranford-Cartwright LC, 2005. How do malaria ookinetes cross the mosquito midgut wall? Trends Parasitol 21 : 22–28. [Google Scholar]
  35. Moret Y, Siva-Jothy MT, 2003. Adaptive innate immunity? Responsive-mode prophylaxis in the mealworm beetle, Tenebrio molitor. Proc Biol Sci 270 : 2475–2480. [Google Scholar]
  36. Luckhart S, Vodovotz Y, Cui L, Rosenberg R, 1998. The mosquito Anopheles stephensi limits malaria parasite development with inducible synthesis of nitric oxide. Proc Natl Acad Sci USA 95 : 5700–5705. [Google Scholar]
  37. Zambrano-Villa S, Rosales-Borjas D, Carrero JC, Ortiz-Ortiz L, 2002. How protozoan parasites evade the immune response. Trends Parasitol 18 : 272–278. [Google Scholar]
  38. Warr E, Lambrechts L, Koella JC, Bourgouin C, Dimopoulos G, 2006. Anopheles gambiae immune responses to Sephadex beads: Involvement of anti-Plasmodium factors in regulating melanization. Insect Biochem Mol Biol 36 : 769–778. [Google Scholar]
  39. Aguilar R, Dong Y, Warr E, Dimopoulos G, 2005. Anopheles infection responses; laboratory models versus field malaria transmission systems. Acta Trop 95 : 285–291. [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.2007.76.475
Loading
/content/journals/10.4269/ajtmh.2007.76.475
Loading

Data & Media loading...

  • Received : 13 Sep 2006
  • Accepted : 18 Nov 2006

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error