Volume 76, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


To evaluate the potential for nonviremic transmission (NVT) of West Nile virus (WNV) to occur in nature, we examined the effect of increasing spatial and temporal separation between co-feeding mosquitoes on the efficiency of nonviremic transmission and the potential of a West Nile virus bridge vector species, , to be infected via nonviremic transmission. West Nile virus-infected (donor) were allowed to feed on a mouse for 5 minutes followed by non-infected (recipient) mosquitoes with increasing spatial (0, 10, 20, 30, 40, or 50 mm) or temporal (0, 15, 30, 45, or 60 min) separation from the site or time of donor feeding, respectively. Recipients became infected when feeding up to 40 mm from the donor and up to 45 minutes after donor feeding. Additionally, nonviremic transmission of West Nile virus from to was observed.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Apperson CS, Hassan HK, Harrison BA, Savage HM, Aspen SE, Farajollahi A, Crans W, Daniels TJ, Falco RC, Benedict M, Anderson M, McMillen L, Unnasch TR, 2004. Host feeding patterns of established and potential mosquito vectors of West Nile virus in the eastern United States. Vector-Borne Zoonotic Dis 4 : 71–82. [Google Scholar]
  2. Higgs S, Snow K, Gould EA, 2004. The potential for West Nile virus to establish outside of its natural range: a consideration of potential mosquito vectors in the United Kingdom. Trans R Soc Trop Med Hyg 98 : 82–87. [Google Scholar]
  3. Hubalek Z, Halouzka J, 1999. West Nile fever–a reemerging mosquito-borne viral disease in Europe. Emerg Infect Dis 5 : 643–650. [Google Scholar]
  4. Lillibridge KM, Parsons R, Randle Y, Travassos da Rosa AP, Guzman H, Siirin M, Wuithiranyagool T, Hailey C, Higgs S, Bala AA, Pascua R, Meyer T, Vanlandingham DL, Tesh RB, 2004. The 2002 introduction of West Nile virus into Harris County, Texas, an area historically endemic for St. Louis encephalitis. Am J Trop Med Hyg 70 : 676–681. [Google Scholar]
  5. Dohm DJ, Sardelis MR, Turell MJ, 2002. Experimental vertical transmission of West Nile virus by Culex pipiens (Diptera: Culicidae). J Med Entomol 39 : 640–644. [Google Scholar]
  6. Hribar LJ, Vlach JJ, Demay DJ, Stark LM, Stoner RL, Godsey MS, Burkhalter KL, Spoto MC, James SS, Smith JM, Fussell EM, 2003. Mosquitoes infected with West Nile virus in the Florida Keys, Monroe County, Florida, USA. J Med Entomol 40 : 361–363. [Google Scholar]
  7. Sardelis MR, Turell MJ, 2001. Ochlerotatus j. japonicus in Frederick County, Maryland: discovery, distribution, and vector competence for West Nile virus. J Am Mosq Control Assoc 17 : 137–141. [Google Scholar]
  8. Turell MJ, Dohm DJ, Sardelis MR, Oguinn ML, Andreadis TG, Blow JA, 2005. An update on the potential of north American mosquitoes (Diptera: Culicidae) to transmit West Nile Virus. J Med Entomol 42 : 57–62. [Google Scholar]
  9. Turell MJ, O’Guinn M, Oliver J, 2000. Potential for New York mosquitoes to transmit West Nile virus. Am J Trop Med Hyg 62 : 413–414. [Google Scholar]
  10. Turell MJ, O’Guinn ML, Dohm DJ, Jones JW, 2001. Vector competence of North American mosquitoes (Diptera: Culicidae) for West Nile virus. J Med Entomol 38 : 130–134. [Google Scholar]
  11. Turell MJ, O’Guinn ML, Dohm DJ, Webb JP Jr, Sardelis MR, 2002. Vector competence of Culex tarsalis from Orange County, California, for West Nile virus. Vector-Borne Zoonotic Dis 2 : 193–196. [Google Scholar]
  12. Harrison BA, Turell MJ, O’Guinn ML, Sardelis MR, Dohm DJ, 2000. Preparing for West Nile virus and multidirectional surveillance and control. Wing Beats Winter 2000 : 14–15. [Google Scholar]
  13. Granwehr BP, Lillibridge KM, Higgs S, Mason PW, Aronson JF, Campbell GA, Barrett AD, 2004. West Nile virus: where are we now? Lancet Infect Dis 4 : 547–556. [Google Scholar]
  14. Lord CC, Higgs S, Tabachnick WJ, 2005. The impact of non-systemic transmission on arbovirus epidemiology. 54th Annual Meeting of the American Society for Tropical Medicine and Hygiene: 158. [Google Scholar]
  15. Higgs S, Schneider BS, Vanlandingham DL, Klingler KA, Gould EA, 2005. Nonviremic transmission of West Nile virus. Proc Natl Acad Sci USA 102 : 8871–8874. [Google Scholar]
  16. Risi GF, 2006. Nonviremic transmission of West Nile virus: a novel observation with significant potential implications. Contagion 3 : 98–100. [Google Scholar]
  17. Jones LD, Davies CR, Steele GM, Nuttall PA, 1987. A novel mode of arbovirus transmission involving a nonviremic host. Science 237 : 775–777. [Google Scholar]
  18. Jones LD, Gaunt M, Hails RS, Laurenson K, Hudson PJ, Reid H, Henbest P, Gould EA, 1997. Transmission of louping ill virus between infected and uninfected ticks co-feeding on mountain hares. Med Vet Entomol 11 : 172–176. [Google Scholar]
  19. Nuttall LDJaPA, 1990. The effect of host resistance to tick infestation on the trasnmission of thogoto virus by ticks. J Gen Virol 71 : 1039–1043. [Google Scholar]
  20. Labuda M, Austyn JM, Zuffova E, Kozuch O, Fuchsberger N, Lysy J, Nuttall PA, 1996. Importance of localized skin infection in tick-borne encephalitis virus transmission. Virology 219 : 357–366. [Google Scholar]
  21. Labuda M, Jones LD, Williams T, Danielova V, Nuttall PA, 1993. Efficient transmission of tick-borne encephalitis virus between cofeeding ticks. J Med Entomol 30 : 295–299. [Google Scholar]
  22. Labuda M, Kozuch O, Zuffova E, Eleckova E, Hails RS, Nuttall PA, 1997. Tick-borne encephalitis virus transmission between ticks cofeeding on specific immune natural rodent hosts. Virology 235 : 138–143. [Google Scholar]
  23. Patrican LA, 1997. Acquisition of Lyme disease spirochetes by cofeeding Ixodes scapularis ticks. Am J Trop Med Hyg 57 : 589–593. [Google Scholar]
  24. Lawrie CH, Uzcategui NY, Gould EA, Nuttall PA, 2004. Ixodid and argasid tick species and West Nile virus. Emerg Infect Dis 10 : 653–657. [Google Scholar]
  25. Mead DG, Ramberg FB, Besselsen DG, Mare CJ, 2000. Transmission of vesicular stomatitis virus from infected to noninfected black flies co-feeding on nonviremic deer mice. Science 287 : 485–487. [Google Scholar]
  26. Randolph SE, Miklisova D, Lysy J, Rogers DJ, Labuda M, 1999. Incidence from coincidence: patterns of tick infestations on rodents facilitate transmission of tick-borne encephalitis virus. Parasitology 118 : 177–186. [Google Scholar]
  27. Lord CC, Tabachnick WJ, 2002. Influence of nonsystemic transmission on the epidemiology of insect borne arboviruses: a case study of vesicular stomatitis epidemiology in the western United States. J Med Entomol 39 : 417–426. [Google Scholar]
  28. Jones LD, Nuttall PA, 1989. Non-viraemic transmission of Thogoto virus: influence of time and distance. Trans R Soc Trop Med Hyg 83 : 712–714. [Google Scholar]
  29. Girard YA, Klingler KA, Higgs S, 2004. West Nile virus dissemination and tissue tropisms in orally infected Culex pipiens quinquefasciatus. Vector-Borne Zoonotic Dis 4 : 109–122. [Google Scholar]
  30. Girard YA, Popov V, Wen J, Han V, Higgs S, 2005. Ultrastructural study of West Nile virus pathogenesis in Culex pipiens quin-quefasciatus (Diptera: Culicidae). J Med Entomol 42 : 429–444. [Google Scholar]
  31. Vanlandingham DL, Schneider BS, Klingler K, Fair J, Beasley D, Huang J, Hamilton P, Higgs S, 2004. Real-time reverse transcriptase-polymerase chain reaction quantification of West Nile virus transmitted by Culex pipiens quinquefasciatus. Am J Trop Med Hyg 71 : 120–123. [Google Scholar]
  32. Beasley DW, Davis CT, Guzman H, Vanlandingham DL, Travassos da Rosa AP, Parsons RE, Higgs S, Tesh RB, Barrett AD, 2003. Limited evolution of West Nile virus has occurred during its southwesterly spread in the United States. Virology 309 : 190–195. [Google Scholar]
  33. Higgs S, Olson KE, Kamrud KI, Powers AM, Beaty BJ, 1997. Viral expression systems and viral infections in insects. Crampton JM, Beard CB, Louis C (ed). The Molecular Biology of Disease Vectors: A Methods Manual. UK: Chapman and Hall, 459–484.
  34. Karber G, 1931. Bietrag zur Kllktiven Behandlung Pharmakologischer Reiheversuche. Arch Exp Pathol Pharmakol 162 : 480–483. [Google Scholar]
  35. Reno HE, Novak RJ, 2005. Characterization of apyrase-like activity in Ochlerotatus triseriatus, Ochlerotatus hendersoni, and Aedes aegypti. Am J Trop Med Hyg 73 : 541–545. [Google Scholar]
  36. Girard YA, Schneider BS, McGee CE, Wen J, Han VC, Popov V, Mason PW, Higgs S, 2006. Salivary gland morphology and virus transmission during long-term cytopathologic West Nile virus infection in Culex mosquitoes. Am J Trop Med Hyg 76 : 118–128. [Google Scholar]
  37. Styer LM, Bernard KA, Kramer LD, 2006. Enhanced early West Nile virus infection in young chickens infected by mosquito bite: effect of viral dose. Am J Trop Med Hyg 75 : 337–345. [Google Scholar]
  38. Mahmood F, Fang Y, Chiles RE, Reisen WK, 2004. Methods for studying the vector competence of Culex tarsalis for western equine encephalomyelitis virus. J Am Mosq Control Assoc 20 : 277–282. [Google Scholar]
  39. Weaver SC, Lorenz LH, Scott TW, 1993. Distribution of western equine encephalomyelitis virus in the alimentary tract of Culex tarsalis (Diptera: Culicidae) following natural and artificial blood meals. J Med Entomol 30 : 391–397. [Google Scholar]
  40. Lord CC, Rutledge CR, Tabachnick WJ, 2006. Relationships between host viremia and vector susceptibility for arboviruses. J Med Entomol 43 : 623–630. [Google Scholar]
  41. Whitfield SG, Murphy FA, Sudia WD, 1973. St. Louis encephalitis virus: an ultrastructural study of infection in a mosquito vector. Virology 56 : 70–87. [Google Scholar]
  42. Komar N, 2003. West Nile virus: epidemiology and ecology in North America. Adv Virus Res 61 : 185–234. [Google Scholar]
  43. Reisen WK, Fang Y, Martinez VM, 2005. Avian host and mosquito (Diptera: Culicidae) vector competence determine the efficiency of West Nile and St. Louis encephalitis virus transmission. J Med Entomol 42 : 367–375. [Google Scholar]
  44. Apperson CS, Harrison BA, Unnasch TR, Hassan HK, Irby WS, Savage HM, Aspen SE, Watson DW, Rueda LM, Engber BR, Nasci RS, 2002. Host-feeding habits of Culex and other mosquitoes (Diptera: Culicidae) in the Borough of Queens in New York City, with characters and techniques for identification of Culex mosquitoes. J Med Entomol 39 : 777–785. [Google Scholar]
  45. Molaei G, Andreadis TG, Armstrong PM, Anderson JF, Vossbrinck CR, 2006. Host feeding patterns of Culex mosquitoes and West Nile virus transmission, northeastern United States. Emerg Infect Dis 12 : 468–474. [Google Scholar]
  46. Kilpatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak P, 2006. West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol 4 : e82. [Google Scholar]
  47. Condotta SA, Hunter FF, Bidochka MJ, 2004. West Nile virus infection rates in pooled and individual mosquito samples. Vector-Borne Zoonotic Dis 4 : 198–203. [Google Scholar]

Data & Media loading...

  • Received : 25 Oct 2006
  • Accepted : 18 Nov 2006

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error