Volume 76, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Levels of C-reactive protein (CRP), a classic marker for the acute phase response (APR), were measured in children with asymptomatic malaria infection in the Amele region of Papua New Guinea (PNG). Despite the presence of parasitemia, the prevalence of CRP levels consistent with an APR (CRP > 10 μg/mL) was very low (< 10%). Splenomegaly was significantly associated with increased parasitemia ( < 0.001) and CRP levels ( < 0.001), highlighting the importance of splenomegaly as an indicator of recent high density infection in this population. Multivariate analysis showed that CRP levels were significantly associated with splenomegaly, fever, hemoglobin, and age ( ≤ 0.002). CRP levels also increased with increasing parasitemia ( < 0.001) but remained < 3.5 μg/mL. The low levels of CRP indicate that children in the Amele modulate inflammation associated with malaria.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Gabay C, Kushner I, 1999. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 340 : 448–454. [Google Scholar]
  2. Koj A, 1985. Definition and classification of acute phase proteins. Gordon A, Koj A, eds. The Acute Phase Response to Injury and Infection. Amsterdam: Elsevier Science Publishers, 139–144.
  3. Karunaweera ND, Grau GE, Gamage P, Carter R, Mendis KN, 1992. Dynamics of fever and serum levels of tumor necrosis factor are closely associated during clinical paroxysms in Plasmodium vivax malaria. Proc Natl Acad Sci USA 89 : 3200–3203. [Google Scholar]
  4. Kwiatkowski D, Cannon JG, Manogue KR, Cerami A, Dinarello CA, Greenwood BM, 1989. Tumour necrosis factor production in falciparum malaria and its association with schizont rupture. Clin Exp Immunol 77 : 361–366. [Google Scholar]
  5. Jakobsen PH, McKay V, N’Jie R, Olaleye BO, D’Alessandro U, Zhang GH, Eggelte TA, Koch C, Greenwood BM, 1998. Decreased antitoxic activities among children with clinical episodes of malaria. Infect Immun 66 : 1654–1659. [Google Scholar]
  6. Hurt N, Smith T, Teuscher T, Tanner M, 1994. Do high levels of C-reactive protein in Tanzanian children indicate malaria morbidity. Clin Diagn Lab Immunol 1 : 437–444. [Google Scholar]
  7. McGuire W, D’Alessandro U, Olaleye BO, Thomson MC, Langerock P, Greenwood BM, Kwiatkowski D, 1996. C-reactive protein and haptoglobin in the evaluation of a community-based malaria control programme. Trans R Soc Trop Med Hyg 90 : 10–14. [Google Scholar]
  8. Hurt N, Smith T, Tanner M, Mwankusye S, Bordmann G, Weiss NA, Teuscher T, 1994. Evaluation of C-reactive protein and haptoglobin as malaria episode markers in an area of high transmission in Africa. Trans R Soc Trop Med Hyg 88 : 182–186. [Google Scholar]
  9. Naik P, Voller A, 1984. Serum C-reactive protein levels and falciparum malaria. Trans R Soc Trop Med Hyg 78 : 812–813. [Google Scholar]
  10. Ree GH, 1971. C-reactive protein in Gambian Africans with special reference to P. falciparum malaria. Trans R Soc Trop Med Hyg 65 : 574–580. [Google Scholar]
  11. Chagnon A, Yao N, Carli P, Paris JF, Marlier S, Pierre C, Bussiere H, 1992. C-reactive protein. Presse Med 21 : 217–218. [Google Scholar]
  12. Verhoef H, West CE, Ndeto P, Burema J, Beguin Y, Kok FJ, 2001. Serum transferrin receptor concentration indicates increased erythropoiesis in Kenyan children with asymptomatic malaria. Am J Clin Nutr 74 : 767–775. [Google Scholar]
  13. Bruce MC, Donnelly CA, Alpers MP, Galinski MR, Barnwell JW, Walliker D, Day KP, 2000. Cross-species interactions between malaria parasites in humans. Science 287 : 845–848. [Google Scholar]
  14. Cox MJ, Kum DE, Tavul L, Narara A, Raiko A, Baisor M, Alpers MP, Medley GF, Day KP, 1994. Dynamics of malaria parasitemia associated with febrile illness in children from a rural area of Madang, Papua New Guinea. Trans R Soc Trop Med Hyg 88 : 191–197. [Google Scholar]
  15. Imrie H, Fowkes FJ, Michon P, Tavul L, Hume JC, Piper KP, Reeder JC, Day KP, 2006. Haptoglobin levels are associated with haptoglobin genotype and {alpha}+-thalassemia in a malaria-endemic area. Am J Trop Med Hyg 74 : 965–971. [Google Scholar]
  16. Cattani JA, Tulloch JL, Vrbova H, Jolley D, Gibson FD, Moir JS, Heywood PF, Alpers MP, Stevenson A, Clancy R, 1986. The epidemiology of malaria in a population surrounding Madang, Papua New Guinea. Am J Trop Med Hyg 35 : 3–15. [Google Scholar]
  17. Burkot TR, Graves PM, Cattan JA, Wirtz RA, Gibson FD, 1987. The efficiency of sporozoite transmission in the human malarias, Plasmodium falciparum and P. vivax. Bull World Health Organ 65 : 375–380. [Google Scholar]
  18. Flint J, Hill AV, Bowden DK, Oppenheimer SJ, Sill PR, Serjeantson SW, Bana-Koiri J, Bhatia K, Alpers MP, Boyce AJ, Weatherall DJ, Clegg JB, 1986. High frequencies of alpha-thalassaemia are the result of natural selection by malaria. Nature 321 : 744–750. [Google Scholar]
  19. Brabin L, Brabin BJ, 1990. Malaria and glucose 6-phosphate dehydrogenase deficiency in populations with high and low spleen rates in Madang, Papua New Guinea. Hum Hered 40 : 15–21. [Google Scholar]
  20. O’Donnell A, Allen SJ, Mgone CS, Martinson JJ, Clegg JB, Weatherall DJ, 1998. Red cell morphology and malaria anaemia in children with Southeast-Asian ovalocytosis band 3 in Papua New Guinea. Br J Haematol 101 : 407–412. [Google Scholar]
  21. Imrie H, Fowkes F, Michon P, Tavul L, Hume J, Piper K, Day KP, 2006. Haptoglobin levels are associated with haptoglobin genotype and alpha+-thalassemia in a malaria endemic area. Am J Trop Med Hyg. 74 : 965–971. [Google Scholar]
  22. Fowkes FJ, Imrie H, Migot-Nabias F, Michon P, Justice A, Deloron P, Luty AJ, Day KP, 2006. Association of haptoglobin levels with age, parasite density, and haptoglobin genotype in a malaria-endemic area of Gabon. Am J Trop Med Hyg 74 : 26–30. [Google Scholar]
  23. Rosales FJ, Topping JD, Smith JE, Shankar AH, Ross AC, 2000. Relation of serum retinol to acute phase proteins and malarial morbidity in Papua New Guinea children. Am J Clin Nutr 71 : 1582–1588. [Google Scholar]
  24. Zeger S, Liang K, Diggle P, 1996. Analysis of Longitudinal Data. Oxford, UK: Oxford University Press.
  25. Manor O, Kark J, 1996. A comparitive study of four methods for analysis of repeated measures data. Stat Med 15 : 114. [Google Scholar]
  26. Venables W, Ripley B, 2002. Modern Applied Statistics with S. New York: Springer-Verlag.
  27. R Development Core Team, 2005. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
  28. Bruce MC, Day KP, 2002. Cross-species regulation of malaria parasitemia in the human host. Curr Opin Microbiol 5 : 431–437. [Google Scholar]
  29. Bruce MC, Galinski MR, Barnwell JW, Donnelly CA, Walmsley M, Alpers MP, Walliker D, Day KP, 2000. Genetic diversity and dynamics of Plasmodium falciparum and P. vivax populations in multiply infected children with asymptomatic malaria infections in Papua New Guinea. Parasitology 121 : 257–272. [Google Scholar]
  30. Bruce MC, Donnelly CA, Packer M, Lagog M, Gibson N, Narara A, Walliker D, Alpers MP, Day KP, 2000. Age- and species-specific duration of infection in asymptomatic malaria infections in Papua New Guinea. Parasitology 121 : 247–256. [Google Scholar]
  31. Pepys MB, Baltz ML, 1983. Acute phase proteins with special reference to C-reactive protein and related proteins (pentaxins) and serum amyloid A protein. Adv Immunol 34 : 141–212. [Google Scholar]
  32. Vigushin DM, Pepys MB, Hawkins PN, 1993. Metabolic and scintigraphic studies of radioiodinated human C-reactive protein in health and disease. J Clin Invest 91 : 1351–1357. [Google Scholar]
  33. Allen SJ, O’Donnell A, Alexander ND, Alpers MP, Peto TE, Clegg JB, Weatherall DJ, 1997. alpha+-Thalassemia protects children against disease caused by other infections as well as malaria. Proc Natl Acad Sci USA 94 : 14736–14741. [Google Scholar]
  34. Genton B, Smith T, Baea K, Narara A, al-Yaman F, Beck HP, Hii J, Alpers M, 1994. Malaria: how useful are clinical criteria for improving the diagnosis in a highly endemic area? Trans R Soc Trop Med Hyg 88 : 537–541. [Google Scholar]
  35. Lim SK, Ferraro B, Moore K, Halliwell B, 2001. Role of haptoglobin in free hemoglobin metabolism. Redox Rep 6 : 219–227. [Google Scholar]

Data & Media loading...

  • Received : 24 May 2006
  • Accepted : 12 Oct 2006

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error