Volume 76, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Mosquitoes made resistant to pathogens through genetic engineering are proposed as a basis for developing a strategy to control disease transmission. Transgenic approaches that introduce exogenous antipathogen effector genes into mosquito genomes require -acting regulatory DNA to control tissue-, stage-, and sex-specific transgene expression. We show that control sequences derived from a vitellogenin-encoding gene of , a major vector in sub-Saharan Africa, can direct expression of an exogenous gene in a tissue-, stage-, and sex-specific manner in , a vector of urban malaria in southern Asia. Specific reporter gene expression was observed in fat-body tissues of transgenic blood-fed females, but not in transgenic males or non-blood-fed transgenic females. Multiple bloodmeals resulted in the continuous presence of reporter gene transcripts for at least 12 days. The persistent expression makes the heterologous promoter a good candidate for controlling transcription of engineered antipathogen effector genes in this important malaria vector.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Collins FH, James AA, 1996. Genetic modification of mosquitoes. Sci Med (Phila) 3 : 52–61. [Google Scholar]
  2. Nirmala X, James AA, 2003. Engineering Plasmodium-refractory phenotypes in mosquitoes. Trends Parasitol 19 : 384–387. [Google Scholar]
  3. Riehle MA, Srinivasan P, Moreira CK, Jacobs-Lorena M, 2003. Towards genetic manipulation of wild mosquito populations to combat malaria: advances and challenges. J Exp Biol 206 : 3809–3816. [Google Scholar]
  4. Nirmala X, Marinotti O, James AA, 2005. The accumulation of specific mRNAs following multiple blood meals in Anopheles gambiae. Insect Mol Biol 14 : 95–103. [Google Scholar]
  5. Moreira LA, Edwards MJ, Adhami F, Jasinskiene N, James AA, Jacobs-Lorena M, 2000. Robust gut-specific gene expression in transgenic Aedes aegypti mosquitoes. Proc Natl Acad Sci USA 97 : 10895–10898. [Google Scholar]
  6. Kim W, Koo H, Richman AM, Seeley D, Vizioli J, Klocko AD, O’Brochta DA, 2004. Ectopic expression of a cecropin transgene in the human malaria vector mosquito Anopheles gambiae (Diptera: Culicidae): effects on susceptibility to Plasmodium. J Med Entomol 41 : 447–455. [Google Scholar]
  7. Yoshida S, Watanabe H, 2006. Robust salivary gland-specific transgene expression in Anopheles stephensi mosquito. Insect Mol Biol 15 : 403–410. [Google Scholar]
  8. Nirmala X, Marinotti O, Sandoval JM, Phin S, Gakhar S, Jasinskiene N, James AA, 2006. Functional characterization of the promoter of the vitellogenin gene, AsVg1, of the malaria vector, Anopheles stephensi. Insect Biochem Mol Biol 36 : 694–700. [Google Scholar]
  9. Munoz D, Jimenez A, Marinotti O, James AA, 2004. The Ae-Act-4 gene is expressed in the developing flight muscles of female Aedes aegypti. Insect Mol Biol 13 : 563–568. [Google Scholar]
  10. Catteruccia F, Benton JP, Crisanti A, 2005. An Anopheles transgenic sexing strain for vector control. Nat Biotechnol 23 : 1414–1417. [Google Scholar]
  11. Ghosh AK, Moreira LA, Jacobs-Lorena M, 2002. Plasmodium–mosquito interactions, phage display libraries and transgenic mosquitoes impaired for malaria transmission. Insect Biochem Mol Biol 32 : 1325–1331. [Google Scholar]
  12. Briegel H, Horler, E, 1993. Multiple blood meals as a reproductive strategy in Anopheles (Diptera: Culicidae) [Erratum in J Med Entomol 31: 321]. J Med Entomol 30 : 975–985. [Google Scholar]
  13. Horn C, Wimmer EA, 2000. A versatile vector set for animal transgenesis. Dev Genes Evol 210 : 630–637. [Google Scholar]
  14. Horn C, Schmid BG, Pogoda FS, Wimmer EA, 2002. Fluorescent transformation markers for insect transgenesis. Insect Biochem Mol Biol 32 : 1221–1235. [Google Scholar]
  15. Ito J, Ghosh A, Moreira LA, Wimmer EA, Jacobs-Lorena M, 2002. Transgenic Anopheline mosquitoes impaired in transmission of a malaria parasite. Nature 417 : 452–455. [Google Scholar]
  16. Sambrook J, Fritsch EF, Maniatis T, 1989. Molecular Cloning. A Laboratory Manual. Plainview, NY: Cold Spring Harbor Laboratory Press.
  17. Church GM, Gilbert W, 1984. Genomic sequencing. Proc Natl Acad Sci USA 81 : 1991–1995. [Google Scholar]
  18. Abraham EG, Islam S, Srinivasan P, Ghosh AK, Valenzuela JG, Ribeiro JMC, Kafatos FC, Dimopoulos G, Jacobs-Lorena M, 2004. Analysis of the Plasmodium and Anopheles transcriptional repertoire during ookinete development and midgut invasion. J Biol Chem 279 : 5573–5580. [Google Scholar]
  19. Laemmli UK, 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227 : 680–685. [Google Scholar]
  20. Clements AN, 1992. The Biology of Mosquitoes, Vol. 1: Development, Nutrition and Reproduction. London: Chapman and Hall, 408–423.
  21. Cherbas L, Cherbas P, 1993. The arthropod initiator: the capsite consensus plays in an important role in transcription. Insect Mol Biol 23 : 81–90. [Google Scholar]
  22. Raikhel AS, Kokoza VA, Zhu J, Martin D, Wang SF, Li C, Sun G, Ahmed A, Dittmer N, Attardo G, 2002. Molecular biology of mosquito vitellogenesis: from basic studies to genetic engineering of antipathogen immunity. Insect Biochem Mol Biol 32 : 1275–1286. [Google Scholar]
  23. Schneider DS, James AA, 2006. Bridging the gaps in vector biology. Workshop on the Molecular and Population Biology of Mosquitoes and Other Disease Vectors. EMBO Rep 7 : 259–262. [Google Scholar]
  24. James AA, 2005. Gene drive systems in mosquitoes: rules of the road. Trends Parasitol 21 : 64–67. [Google Scholar]
  25. Lane RP, Crosskey RW. 1993. Medical Insects and Arachnids. First edition. London: Chapman and Hall, 145.
  26. Abraham EG, Donnelly-Doman M, Fujioka H, Ghosh A, Moreira L, Jacobs-Lorena M, 2005. Driving midgut-specific expression and secretion of a foreign protein in transgenic mosquitoes with AgAper1 regulatory elements. Insect Mol Biol 14 : 271–279. [Google Scholar]
  27. Lombardo F, Nolan T, Lycett G, Lanfrancotti A, Stich N, Catteruccia F, Louis C, Coluzzi M, Arca B, 2005. An Anopheles gambiae salivary gland promoter analysis in Drosophila melanogaster and Anopheles stephensi. Insect Mol Biol 14 : 207–216. [Google Scholar]
  28. Moreira LA, Ito J, Ghosh A, Devenport M, Zieler H, Abraham EG, Crisanti A, Nolan T, Catteruccia F, Jacobs-Lorena M, 2002. Bee venom phospholipase inhibits malaria parasite development in transgenic mosquitoes. J Biol Chem 277 : 40839–40843. [Google Scholar]
  29. Skavdis G, Siden-Kiamos I, Muller HM, Crisanti A, Louis C, 1996. Conserved function of Anopheles gambiae midgut-specific promoters in the fruit fly. EMBO J 15 : 344–350. [Google Scholar]
  30. Lombardo F. Di Cristina M, Spanos L, Coluzzi LC, 2000. Promoter sequences of the putative Anopheles gambiae apyrase confer salivary gland expression in Drosophila melanogaster. J Biol Chem 275 : 23861–23868. [Google Scholar]
  31. Raikhel AS, 2005. Vitellogenesis of disease vectors, from physiology to genes. In: Marquardt WC, ed. Biology of Disease Vectors. Second edition. Burlington, MA: Elsevier Academic Press, 329–346.
  32. Kokoza VA, Ahmed A, Cho WL, Jasinskiene N, James AA, Raikhel AS, 2000. Engineering blood meal-activated systemic immunity in the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci USA 97 : 9144–9149. [Google Scholar]
  33. Kokoza VA, Martin M, Mienaltowski MJ, Ahmed A, Morton CM, Raikhel AS, 2001. Transcriptional regulation of the mosquito vitellogenin gene via a blood meal-triggered cascade. Gene 274 : 47–65. [Google Scholar]
  34. Shin SW, Kokoza VA, Raikhel AS, 2003. Transgenesis and reverse genetics of mosquito innate immunity. J Exp Biol 206 : 3835–3843. [Google Scholar]
  35. Marinotti O, Calvo E, Nguyen QK, Dissanayake S, Ribeiro JMJ, James AA, 2006. Genome-wide analysis of gene expression in adult Anopheles gambiae. Insect Mol Biol 15 : 1–12. [Google Scholar]
  36. Redfern CPF, 1982. 20-Hydroxyecdysone and ovarian development in Anopheles stephensi. J Insect Physiol 28 : 97–103. [Google Scholar]
  37. Jahan NH, Hurd H, 1998. Effect of Plasmodium yoelii nigeriensis (Haemosporidia: Plasmodiidae) on Anopheles stephensi (Diptera: Culicidae) vitellogenesis. J Med Entomol 35 : 956–961. [Google Scholar]
  38. Ahmed AM, Maingon R, Romans P, Hurd H, 2001. Effects of malaria infection on vitellogenesis in Anopheles gambiae during two gonotrophic cycles. Insect Mol Biol 10 : 347–356. [Google Scholar]
  39. Newbury SF, 2006. Control of mRNA stability in eukaryotes. Biochem Soc Trans 34 : 30–34. [Google Scholar]
  40. Koella JC, Sorensen FL, Anderson RA, 1998. The malaria parasite, Plasmodium falciparum, increases the frequency of multiple feeding of its mosquito vector, Anopheles gambiae. Proc R Soc Lond B Biol Sci 265 : 763–768. [Google Scholar]

Data & Media loading...

  • Received : 12 Dec 2006
  • Accepted : 13 Mar 2007

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error