Volume 76, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Although variation in mortality is considered by virtually all vector-borne disease specialists to be one of the most important determinants of an arthropod’s capacity to transmit pathogens, the operational assumption often is that insect vector mortality is independent of age. Acceptance of the non-senescence assumption leads to the erroneous conclusion that mosquito age is unimportant, results in misleading predictions regarding disease reductions after vector control, and represses study of other aspects of mosquito biology that change with age. We brought large-scale laboratory life table techniques ( > 100,000) to bear on the question of age-dependent mortality in the mosquito vector of dengue virus, . Mortality was highly age dependent in both sexes. Mortality was low at young ages (< 10 days old), steadily increased at middle ages, and decelerated at older ages. A newly derived age-dependent model of pathogen transmission shows the importance of young mosquitoes and population age structure to transmission dynamics. Departure from the age-independent mortality paradigm encourages research on overlooked complexities in mosquito biology, the need for innovative methods to study mosquito population dynamics, and the need to study age-dependent changes for an accurate understanding of mosquito biology and pathogen transmission.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Dye C, 1992. The analysis of parasite transmission by bloodsucking insects. Annu Rev Entomol 37 : 1–19. [Google Scholar]
  2. Clements AN, Paterson GD, 1981. The analysis of mortality and survival rates in wild populations of mosquitoes. J Appl Ecol 18 : 373–399. [Google Scholar]
  3. MacDonald G, 1952. The analysis of the sporozoite rate. Trop Dis Bull 49 : 569–586. [Google Scholar]
  4. Russel PF, Rao TR, 1942. Observations on longevity of Anopheles culicifacies imagines. Am J Trop Med 22 : 517–533. [Google Scholar]
  5. Keener GG Jr, 1945. Detailed observations on the life history of Anopheles quadrimaculatus. J Natl Malaria Soc 4 : 263–270. [Google Scholar]
  6. Kershaw WE, Chalmers TA, Lavoipierre MMJ, 1954. Studies on arthropod survival. I.—The pattern of mosquito survival in laboratory conditions. Ann Trop Med Parasitiol 48 : 442–450. [Google Scholar]
  7. Gillies MT, Wilkes TJ, 1965. A study of the age-compositions of populations of Anopheles gambiae Giles and A. funestus Giles in north-eastern Tanzania. Bull Entomol Res 56 : 237–262. [Google Scholar]
  8. Briegel H, Kaiser C, 1973. Life-span of mosquitoes (Culicidae, Diptera) under laboratory conditions. Gerontologia 19 : 240–249. [Google Scholar]
  9. Harrington LC, Buonaccorsi JP, Edman JD, Costero A, Kittayapong P, Clark GG, Scott TW, 2001. Analysis of survival of young and old Aedes aegypti (Diptera: Culicidae) from Puerto Rico and Thailand. J Med Entomol 38 : 537–547. [Google Scholar]
  10. Okech BA, Gouagna LC, Killeen GF, Knols BG, Kabiru EW, Beier JC, Yan G, Githure JI, 2003. Influence of sugar availability and indoor microclimate on survival of Anopheles gambiae (Diptera: Culicidae) under semifield conditions in Western Kenya. J Med Entomol 40 : 657–663. [Google Scholar]
  11. Nayar JK, Sauerman DM Jr, 1973. A comparative study of flight performance and fuel utilization as a function of age in females of Florida mosquitoes. J Insect Physiol 19 : 1977–1988. [Google Scholar]
  12. Christensen BM, LaFond MM, Christensen LA, 1986. Defense reactions of mosquitoes to filarial worms: Effect of host age on the immune response to Dirofilaria immitis microfilariae. J Parasitol 72 : 212–215. [Google Scholar]
  13. Beckett EB, 1990. Development and aging of the salivary glands of adult female Aedes aegypti (L.) and Aedes togoi (Theobald) mosquitoes (Diptera: Culicidae). Int J Insect Morphol Embryol 19 : 277–290. [Google Scholar]
  14. Hazelton GA, Lang CA, 1984. Glutathione levels during the mosquito life span with emphasis on senescence. Proc Soc Exp Biol Med 176 : 249–256. [Google Scholar]
  15. Lines JD, Nassor NS, 1991. DDT resistance in Anopheles gambiae declines with mosquito age. Med Vet Entomol 5 : 261–265. [Google Scholar]
  16. Gillies MT, 1988. Anopheles mosquitoes: Vector behavior and bionomics. In: Wernsdorfer WH, McGregor IA, eds. Malaria: Principles and Practice of Malariology. New York: Churchill Livingstone, 453–485.
  17. Ishikawa H, Ishii A, Nagai N, Ohmae H, Harada M, Suguri S, Leafasia J, 2003. A mathematical model for the transmission of Plasmodium vivax malaria. Parasitol Int 52 : 81–93. [Google Scholar]
  18. Killeen GF, McKenzie FE, Foy BD, Schieffelin C, Billingsley PF, Beier JC, 2000. A simplified model for predicting malaria entomologic inoculation rates based on entomologic and parasitologic parameters relevant to control. Am J Trop Med Hyg 62 : 535–544. [Google Scholar]
  19. Smith DL, Dushoff J, McKenzie FE, 2004. The risk of a mosquito-borne infection in a heterogeneous environment. PLoS Biol 2 : e368. [Google Scholar]
  20. Focks DA, Daniels E, Haile DG, Keesling JE, 1995. A simulation model of the epidemiology of urban dengue fever: literature analysis, model development, preliminary validation, and samples of simulation results. Am J Trop Med Hyg 53 : 489–506. [Google Scholar]
  21. Promislow DEL, Tatar M, Pletcher S, Carey JR, 1999. Below-threshold mortality: implications for studies in evolution, ecology and demography. J Evol Biol 12 : 314–328. [Google Scholar]
  22. Dye C, 1990. Epidemiological significance of vector-parasite interactions. Parasitiology 101 : 409–415. [Google Scholar]
  23. Alto BW, Lounibos LP, Juliano SA, 2003. Age-dependent blood-feeding of Aedes aegypti and Aedes albopictus on artificial and living hosts. J Am Mosq Control Assoc 19 : 347–352. [Google Scholar]
  24. Chun J, Riehle M, Paskewitz SM, 1995. Effect of mosquito age and reproductive status on melanization of Sephadex beads in Plasmodium-refractory and -susceptible strains of Anopheles gambiae. J Invertebr Pathol 66 : 11–17. [Google Scholar]
  25. Mourya DT, Hemingway J, Leake CJ, 1993. Changes in enzyme titres with age in four geographical strains of Aedes aegypti and their association with insecticide resistance. Med Vet Entomol 7 : 11–16. [Google Scholar]
  26. Soliman B, Ghalia AA, Shoukry A, Merdan A, 1993. Mosquito age as a factor influencing the transmission of Wuchereria bancrofti. Journal of the Eqyptian Society of Parasitology 23 : 717– 721. [Google Scholar]
  27. Hillyer JF, Schmidt SL, Fuchs JF, Boyle JP, Christensen BM, 2005. Age-associated mortality in immune challenged mosquitoes (Aedes aegypti) correlates with a decrease in haemocyte numbers. Cell Microbiol 7 : 39–51. [Google Scholar]
  28. Garrett-Jones C, 1964. The human blood index of malaria vectors in relation to epidemiological assessment. Bull World Health Organ 30 : 241–261. [Google Scholar]
  29. Christophers SSR, 1960. Aedes aegypti (L.)—The Yellow Fever Mosquito. London: Cambridge University Press.
  30. Nasci R, 1986. The size of emerging and host-seeking Aedes aegypti and the relation of size to blood-feeding success in the field. J Am Mosq Control Assoc 2 : 61–62. [Google Scholar]
  31. Scott TW, Morrison AC, Lorenz LH, Clark GG, Strickman D, Kittayapong P, Zhou H, Edman JD, 2000. Longitudinal Studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puer-to Rico: Population dynamics. J Med Entomol 37 : 77–88. [Google Scholar]
  32. Carey JR, 1993. Applied Biodemography for Biologists with Special Emphasis on Insects. New York: Oxford University Press.
  33. Pletcher S, 1999. WinModest 1.0. Demographic Analysis Tool [computer program]. Rostock, Germany: Max Planck Institute for Demographic Research.
  34. SAS Institute, 1999. SAS System for Windows [computer program]. Version 8. Cary, NC: SAS Institute.
  35. Styer L, Minnick S, Sun A, Scott TW, 2007. Mortality and reproductive dynamics of Aedes aegypti (Diptera:Culicidae) fed human blood. Vector Borne Zoonotic Dis.: in press.
  36. Saul AJ, Graves PM, Kay BH, 1990. A cyclical feeding model for pathogen transmission and its application to determine vectorial capacity from vector infection rates. J Appl Ecol 27 : 123–133. [Google Scholar]
  37. Gubler D, 1997. Dengue and dengue hemorrhagic fever: its history and resurgence as a global public health problem. In: Gubler D, Kuno G, eds. Dengue and Dengue Hemorrhagic Fever. Oxford, UK, CAB International, 1–22.
  38. Scott TW, Amerasinghe PH, Morrison AC, Lorenz LH, Clark GG, Strickman D, Kittayapong P, Edman JD, 2000. Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: Blood feeding frequency. J Med Entomol 37 : 89–101. [Google Scholar]
  39. Harrington LC, Vermeylen F, Jones JJ, Kitthawee S, Sithiprasasna R, Edman JD, Scott TW, 2007. Age-dependent survival of the dengue vector, Aedes aegypti, demonstrated by simultaneous release-recapture of different age cohorts. Am J Trop Med Hyg.: in press.
  40. Vaupel JW, Carey JR, Christensen K, Johnson TE, Yashin AI, Holm NV, Iachine IA, Kannisto V, Khazaeli AA, Liedo P, Longo VD, Zeng Y, Manton KG, Curtsinger JW, 1998. Bio-demographic trajectories of longevity. Science 280 : 855–860. [Google Scholar]
  41. Rosenberg R, Andre RG, Somchit L, 1990. Highly efficient dry season transmission of malaria in Thailand. Trans R Soc Trop Med Hyg 84 : 22–28. [Google Scholar]
  42. Gadawski RM, Smith SM, 1992. Nectar sources and age structure in a population of Aedes provocans (Diptera: Culicidae). J Med Entomol 29 : 879–886. [Google Scholar]
  43. Sheppard PM, Macdonald WW, Tonn RJ, Grab B, 1969. The dynamics of an adult population of Aedes aegypti in relation to dengue haemorrhagic fever in Bangkok. J Anim Ecol 38 : 661–702. [Google Scholar]
  44. Hay SI, Myers MF, Burke DS, Vaughn DW, Endy T, Ananda N, Shanks GD, Snow RW, Rogers DJ, 2000. Etiology of interepidemic periods of mosquito-borne disease. Proc Natl Acad Sci USA 97 : 9335–9339. [Google Scholar]
  45. Hayes EJ, Wall R, 1999. Age-grading adult insects: a review of techniques. Physiol Entomol 24 : 1–10. [Google Scholar]
  46. Desena ML, Clark JM, Edman JD, Symington SB, Scott TW, Clark GG, Peters TM, 1999. Potential for aging female Aedes aegypti (Diptera: Culicidae) by gas chromatographic analysis of cuticular hydrocarbons, including a field evaluation. J Med Entomol 36 : 811–823. [Google Scholar]
  47. Hugo LE, Kay BH, Eaglesham GK, Holling N, Ryan PA, 2006. Investigation of cuticular hydrocarbons for determining the age and survivorship of Australasian mosquitoes. Am J Trop Med Hyg 74 : 462–474. [Google Scholar]
  48. Carey JR, 2001. Insect biodemography. Annu Rev Entomol 46 : 79–110. [Google Scholar]
  49. Wang J-L, Muller H-G, Capra WB, 1998. Analysis of oldest-old mortality: Lifetables revisited. Ann Statist 26 : 126–163. [Google Scholar]

Data & Media loading...

  • Received : 31 May 2006
  • Accepted : 06 Sep 2006

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error