1921
Volume 75, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Genotyping methods for drug efficacy trials have not been standardized and may fail to accurately distinguish recrudescence from new infection, especially in high transmission areas where polyclonal infections are common. We developed a simple method for genotyping using previously identified microsatellites and capillary electrophoresis, validated this method using mixtures of laboratory clones, and applied the method to field samples. Two microsatellite markers produced accurate results for single-clone but not polyclonal samples. Four other microsatellite markers were as sensitive as, and more specific than, commonly used genotyping techniques based on merozoite surface proteins 1 and 2. When applied to samples from 15 patients in Burkina Faso with recurrent parasitemia after treatment with sulphadoxine-pyrimethamine, the addition of these four microsatellite markers to and genotyping resulted in a reclassification of outcomes that strengthened the association between 59R, an anti-folate resistance mutation, and recrudescence ( = 0.31 versus = 0.03). Four microsatellite markers performed well on polyclonal samples and may provide a valuable addition to genotyping for clinical drug efficacy studies in high transmission areas.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.2006.75.836
2006-11-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/14761645/75/5/0750836.html?itemId=/content/journals/10.4269/ajtmh.2006.75.836&mimeType=html&fmt=ahah

References

  1. Slater M, Kiggundu M, Dokomajilar C, Kamya MR, Bakyaita N, Talisuna A, Rosenthal PJ, Dorsey G, 2005. Distinguishing recrudescences from new infections in antimalarial clinical trials: Major impact of interpretation of genotyping results on estimates of drug efficacy. Am J Trop Med Hyg 73 : 256–262. [Google Scholar]
  2. Snounou G, Beck HP, 1998. The use of PCR genotyping in the assessment of recrudescence or reinfection after antimalarial drug treatment. Parasitol Today 14 : 462–467. [Google Scholar]
  3. Farnert A, Arez AP, Babiker HA, Beck HP, Benito A, Bjorkman A, Bruce MC, Conway DJ, Day KP, Henning L, Mercereau-Puijalon O, Ranford-Cartwright LC, Rubio JM, Snounou G, Walliker D, Zwetyenga J, do Rosario VE, 2001. Genotyping of Plasmodium falciparum infections by PCR: A comparative multicentre study. Trans R Soc Trop Med Hyg 95 : 225–232. [Google Scholar]
  4. Anderson TJ, Haubold B, Williams JT, Estrada-Franco JG, Richardson L, Mollinedo R, Bockarie M, Mokili J, Mharakurwa S, French N, Whitworth J, Velez ID, Brockman AH, Nosten F, Ferreira MU, Day KP, 2000. Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. Mol Biol Evol 17 : 1467–1482. [Google Scholar]
  5. Su X, Wellems TE, 1996. Toward a high-resolution Plasmodium falciparum linkage map: polymorphic markers from hundreds of simple sequence repeats. Genomics 33 : 430–444. [Google Scholar]
  6. Nyachieo A, Van Overmeir C, Laurent T, Dujardin JC, D’Alessandro U, 2005. Plasmodium falciparum genotyping by microsatellites as a method to distinguish between recrudescent and new infections. Am J Trop Med Hyg 73 : 210–213. [Google Scholar]
  7. Mwangi JM, Omar SA, Ranford-Cartwright LC, 2006. Comparison of microsatellite and antigen-coding loci for differentiating recrudescing Plasmodium falciparum infections from reinfections in Kenya. Int J Parasitol 36 : 329–336. [Google Scholar]
  8. Jensen JB, 2002. In vitro culture of Plasmodium parasites. Methods Mol Med 72 : 477–488. [Google Scholar]
  9. Musonda CC, Taylor D, Lehman J, Gut J, Rosenthal PJ, Chibale K, 2004. Application of multi-component reactions to antimalarial drug discovery. Part 1: Parallel synthesis and antiplasmodial activity of new 4-aminoquinoline Ugi adducts. Bioorg Med Chem Lett 14 : 3901–3905. [Google Scholar]
  10. Plowe CV, Djimde A, Bouare M, Doumbo O, Wellems TE, 1995. Pyrimethamine and proguanil resistance-conferring mutations in Plasmodium falciparum dihydrofolate reductase: Polymerase chain reaction methods for surveillance in Africa. Am J Trop Med Hyg 52 : 565–568. [Google Scholar]
  11. Zwetyenga J, Rogier C, Tall A, Fontenille D, Snounou G, Trape JF, Mercereau-Puijalon O, 1998. No influence of age on infection complexity and allelic distribution in Plasmodium falciparum infections in Ndiop, a Senegalese village with seasonal, mesoendemic malaria. Am J Trop Med Hyg 59 : 726–735. [Google Scholar]
  12. Cattamanchi A, Kyabayinze D, Hubbard A, Rosenthal PJ, Dorsey G, 2003. Distinguishing recrudescence from reinfection in a longitudinal antimalarial drug efficacy study: comparison of results based on genotyping of msp-1, msp-2, and glurp. Am J Trop Med Hyg 68 : 133–139. [Google Scholar]
  13. Anderson TJ, Su XZ, Bockarie M, Lagog M, Day KP, 1999. Twelve microsatellite markers for characterization of Plasmodium falciparum from finger-prick blood samples. Parasitology 119 : 113–125. [Google Scholar]
  14. Rozen S, Skaletsky H, 2000. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132 : 365–386. [Google Scholar]
  15. Brownstein MJ, Carpten JD, Smith JR, 1996. Modulation of non-templated nucleotide addition by Taq DNA polymerase: primer modifications that facilitate genotyping. Biotechniques 20 : 1004–1006, 1008–1010. [Google Scholar]
  16. Shinde D, Lai Y, Sun F, Arnheim N, 2003. Taq DNA polymerase slippage mutation rates measured by PCR and quasi-likelihood analysis: (CA/GT)n and (A/T)n microsatellites. Nucleic Acids Res 31 : 974–980. [Google Scholar]
  17. Zongo I, Dorsey G, Rouamba N, Dokomajilar C, Lankoande M, Ouedraogo JB, Rosenthal PJ, 2005. Amodiaquine, sulfadoxine-pyrimethamine, and combination therapy for uncomplicated falciparum malaria: A randomized controlled trial from burkina faso. Am J Trop Med Hyg 73 : 826–832. [Google Scholar]
  18. Duraisingh MT, Curtis J, Warhurst DC, 1998. Plasmodium falciparum: Detection of polymorphisms in the dihydrofolate reductase and dihydropteroate synthetase genes by PCR and restriction digestion. Exp Parasitol 89 : 1–8. [Google Scholar]
  19. Jafari S, Le Bras J, Bouchaud O, Durand R, 2004. Plasmodium falciparum clonal population dynamics during malaria treatment. J Infect Dis 189 : 195–203. [Google Scholar]
  20. Walsh PS, Erlich HA, Higuchi R, 1992. Preferential PCR amplification of alleles: mechanisms and solutions. PCR Methods Appl 1 : 241–250. [Google Scholar]
  21. Snounou G, Zhu X, Siripoon N, Jarra W, Thaithong S, Brown KN, Viriyakosol S, 1999. Biased distribution of msp1 and msp2 allelic variants in Plasmodium falciparum populations in Thailand. Trans R Soc Trop Med Hyg 93 : 369–374. [Google Scholar]
  22. Thompson JR, Marcelino LA, Polz MF, 2002. Heteroduplexes in mixed-template amplifications: Formation, consequence and elimination by ‘reconditioning PCR’. Nucleic Acids Res 30 : 2083–2088. [Google Scholar]
  23. Tanabe K, Sakihama N, Farnert A, Rooth I, Bjorkman A, Walliker D, Ranford-Cartwright L, 2002. In vitro recombination during PCR of Plasmodium falciparum DNA: A potential pitfall in molecular population genetic analysis. Mol Biochem Parasitol 122 : 211–216. [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.2006.75.836
Loading
/content/journals/10.4269/ajtmh.2006.75.836
Loading

Data & Media loading...

Supplemental appendices

  • Received : 12 May 2006
  • Accepted : 12 Jul 2006

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error