Volume 75, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Approximately 55% of malaria infections in the Guyana Amazon region are attributed to while the other 45% are attributed to non-falciparum, mostly . However, little is known about the strain types circulating in the region. Using PCR for detection and two genetic markers specific to to detect the polymorphic circumsporozoite protein (CSP) and the conserved 19-kDa region of the merozoite surface protein-1 (MSP-1), we investigated the overall strain distribution and population diversity within in isolates collected from the blood of infected individuals in the interior Amazon region of Guyana, South America. Out of a total of 250 samples positive for , was detected in 30% (76/250) and was detected in 76% (189/250). Mixed infections containing both and constituted 6% (15/250) of the total positive samples. Further analysis of strains showed that 92% (56/61) of the samples hybridized with a probe specific to type VK210, 39% (24/61) hybridized with a probe specific for type VK247, and 25% (15/61) hybridized with a probe specific for the -like CS genotype. DNA sequencing of the 19-kDa C-terminal domain in block 13 of MSP-1 amplified from 61 samples from patients infected with demonstrated that this region is highly conserved, and all samples were identical at the nucleotide level to the Belem and Salvador-1 types. No synonymous or nonsynonymous mutations were observed in this region of the gene, indicating that current vaccine-development efforts based on the MSP-1 fragment would be applicable in Guyana.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Kochar DK, Saxena V, Singh N, Kochar SK, Kumar SV, Das A, 2005. Plasmodium vivax malaria. Emerg Infect Dis 11 : 132–134. [Google Scholar]
  2. Lacerda MV, Alexandre MA, Santos PD, Arcanjo AR, Alecrim WD, Alecrim MG, 2004. Idiopathic thrombocytopenic purpura due to vivax malaria in the Brazilian Amazon. Acta Trop 90 : 187–190. [Google Scholar]
  3. Beg MA, Khan R, Baig SM, Gulzar Z, Hussain R, Smego RA Jr, 2002. Cerebral involvement in benign tertian malaria. Am J Trop Med Hyg 67 : 230–232. [Google Scholar]
  4. Ruebush TK 2nd, Zegarra J, Cairo J, Andersen EM, Green M, Pillai DR, Marquino W, Huilca M, Arevalo E, Garcia C, Solary L, Kain KC, 2003. Chloroquine-resistant Plasmodium vivax malaria in Peru. Am J Trop Med Hyg 69 : 548–552. [Google Scholar]
  5. Taylor WR, Doan HN, Nguyen DT, Tran TU, Fryauff DJ, Gomez-Saladin E, Kain KC, Le DC, Baird JK, 2000. Assessing drug sensitivity of Plasmodium vivax to halofantrine or chloroquine in southern, central Vietnam using an extended 28-day in vivo test and polymerase chain reaction genotyping. Am J Trop Med Hyg 62 : 693–697. [Google Scholar]
  6. Mendis K, Sina BJ, Marchesini P, Carter R, 2001. The neglected burden of Plasmodium vivax malaria. Am J Trop Med Hyg 64 : 97–106. [Google Scholar]
  7. Cui L, Escalante AA, Imwong M, Snounou G, 2003. The genetic diversity of Plasmodium vivax populations. Trends Parasitol 19 : 220–226. [Google Scholar]
  8. Escalante AA, Grebert HM, Isea R, Goldman IF, Basco L, Magris M, Biswas S, Kariuki S, Lal AA, 2002. A study of genetic diversity in the gene encoding the circumsporozoite protein (CSP) of Plasmodium falciparum from different transmission areas. XVI. Asembo Bay Cohort Project. Mol Biochem Parasitol 125 : 83–90. [Google Scholar]
  9. Ferreira MU, Ribeiro WL, Tonon AP, Kawamoto F, Rich SM, 2003. Sequence diversity and evolution of the malaria vaccine candidate merozoite surface protein-1 (MSP-1) of Plasmodium falciparum. Gene 304 : 65–75. [Google Scholar]
  10. Silva NS, Silveira LA, Machado RL, Povoa MM, Ferreira MU, 2000. Temporal and spatial distribution of the variants of merozoite surface protein-1 (MSP-1) in Plasmodium falciparum populations in Brazil. Ann Trop Med Parasitol 94 : 675–688. [Google Scholar]
  11. Vijay Kumar S, Ranjan S, Saxena V, Rajesh V, Roy SK, Kochar D, Ranjan A, Das A, 2005. Plasmodium falciparum: genetic diversity of C-terminal region of MSP-1 in isolates from Indian sub-continent. Exp Parasitol 110 : 384–388. [Google Scholar]
  12. Zakeri S, Abouie Mehrizi A, Djadid ND, Snounou G, 2006. Circumsporozoite protein gene diversity among temperate and tropical Plasmodium vivax isolates from Iran. Trop Med Int Health 11 : 729–737. [Google Scholar]
  13. Kim T, Kim YJ, Song KJ, Song JW, Cha SH, Kim YK, Shin YK, Suh IB, Lim CS, 2002. The molecular characteristics of circumsporozoite protein gene subtypes from Plasmodium vivax isolates in Republic of Korea. Parasitol Res 88 : 1051–1054. [Google Scholar]
  14. Cui L, Mascorro CN, Fan Q, Rzomp KA, Khuntirat B, Zhou G, Chen H, Yan G, Sattabongkot J, 2003. Genetic diversity and multiple infections of Plasmodium vivax malaria in western Thailand. Am J Trop Med Hyg 68 : 613–619. [Google Scholar]
  15. Lim CS, Kim YK, Lee KN, Kim SH, Hoffman KJ, Song KJ, Song JW, 2001. The analysis of circumsporozoite-protein gene sequences from South Korean isolates of Plasmodium vivax. Ann Trop Med Parasitol 95 : 229–235. [Google Scholar]
  16. Cole-Tobian JL, Biasor M, King CL, 2005. High complexity of Plasmodium vivax infections in Papua New Guinean children. Am J Trop Med Hyg 73 : 626–633. [Google Scholar]
  17. Leclerc MC, Gauthier C, Villegas L, Urdaneta L, 2005. Genetic diversity of merozoite surface protein-1 gene of Plasmodium vivax isolates in mining villages of Venezuela (Bolivar State). Acta Trop 95 : 26–32. [Google Scholar]
  18. Zakeri S, Dinparast Djadid N, Zeinali S, 2003. Sequence heterogeneity of the merozoite surface protein-1 gene (MSP-1) of Plasmodium vivax wild isolates in southeastern Iran. Acta Trop 88 : 91–97. [Google Scholar]
  19. Gordon DM, Cosgriff TM, Schneider I, Wasserman GF, Majarian WR, Hollingdale MR, Chulay JD, 1990. Safety and immunogenicity of a Plasmodium vivax sporozoite vaccine. Am J Trop Med Hyg 42 : 527–531. [Google Scholar]
  20. Rosenberg R, Wirtz RA, Lanar DE, Sattabongkot J, Hall T, Waters AP, Prasittisuk C, 1989. Circumsporozoite protein heterogeneity in the human malaria parasite Plasmodium vivax. Science 245 : 973–976. [Google Scholar]
  21. Qari SH, Shi YP, Goldman IF, Udhayakumar V, Alpers MP, Collins WE, Lal AA, 1993. Identification of Plasmodium vivax-like human malaria parasite. Lancet 341 : 780–783. [Google Scholar]
  22. Kain KC, Brown AE, Lanar DE, Ballou WR, Webster HK, 1993. Response of Plasmodium vivax variants to chloroquine as determined by microscopy and quantitative polymerase chain reaction. Am J Trop Med Hyg 49 : 478–484. [Google Scholar]
  23. Arnot DE, Barnwell JW, Tam JP, Nussenzweig V, Nussenzweig RS, Enea V, 1985. Circumsporozoite protein of Plasmodium vivax: gene cloning and characterization of the immunodominant epitope. Science 230 : 815–818. [Google Scholar]
  24. Goldman IF, Qari SH, Millet PG, Collins WE, Lal AA, 1993. Circumsporozoite protein gene of Plasmodium simium, a Plasmodium vivax-like monkey malaria parasite. Mol Biochem Parasitol 57 : 177–180. [Google Scholar]
  25. Udhayakumar V, Qari SH, Patterson P, Collins WE, Lal AA, 1994. Monoclonal antibodies to the circumsporozoite protein repeats of a Plasmodium vivax-like human malaria parasite and Plasmodium simiovale. Infect Immun 62 : 2098–2100. [Google Scholar]
  26. Cochrane AH, Nardin EH, de Arruda M, Maracic M, Clavijo P, Collins WE, Nussenzweig RS, 1990. Widespread reactivity of human sera with a variant repeat of the circumsporozoite protein of Plasmodium vivax. Am J Trop Med Hyg 43 : 446–451. [Google Scholar]
  27. Qari SH, Shi YP, Povoa MM, Alpers MP, Deloron P, Murphy GS, Harjosuwarno S, Lal AA, 1993. Global occurrence of Plasmodium vivax-like human malaria parasite. J Infect Dis 168 : 1485–1489. [Google Scholar]
  28. Gopinath R, Wongsrichanalai C, Cordon-Rosales C, Mirabelli L, Kyle D, Kain KC, 1994. Failure to detect a Plasmodium vivax-like malaria parasite in globally collected blood samples. J Infect Dis 170 : 1630–1633. [Google Scholar]
  29. Oliveira-Ferreira J, Pratt-Riccio LR, Arruda M, Santos F, Ribeiro CT, Goldberg AC, Banic DM, 2004. HLA class II and antibody responses to circumsporozoite protein repeats of P. vivax (VK210, VK247 and P. vivax-like) in individuals naturally exposed to malaria. Acta Trop 92 : 63–69. [Google Scholar]
  30. de Arruda M, Souza RC, Veiga ME, Ferreira AF, Zimmerman RH, 1998. Prevalence of Plasmodium vivax variants VK247 and P. vivax-like human malaria: a retrospective study in indigenous Indian populations of the Amazon region of Brazil. Trans R Soc Trop Med Hyg 92 : 628. [Google Scholar]
  31. Marrelli MT, Branquinho MS, Hoffmann EH, Taipe-Lagos CB, Natal D, Kloetzel JK, 1998. Correlation between positive serology for Plasmodium vivax-like/Plasmodium simiovale malaria parasites in the human and anopheline populations in the State of Acre, Brazil. Trans R Soc Trop Med Hyg 92 : 149–151. [Google Scholar]
  32. Machado RL, Povoa MM, 2000. Distribution of Plasmodium vivax variants (VK210, VK247 and P. vivax-like) in three endemic areas of the Amazon region of Brazil and their correlation with chloroquine treatment. Trans R Soc Trop Med Hyg 94 : 377–381. [Google Scholar]
  33. Gibson HL, Tucker JE, Kaslow DC, Krettli AU, Collins WE, Kiefer MC, Bathurst IC, Barr PJ, 1992. Structure and expression of the gene for Pv200, a major blood-stage surface antigen of Plasmodium vivax. Mol Biochem Parasitol 50 : 325–333. [Google Scholar]
  34. Collins WE, Kaslow DC, Sullivan JS, Morris CL, Galland GG, Yang C, Saekhou AM, Xiao L, Lal AA, 1999. Testing the efficacy of a recombinant merozoite surface protein (MSP-1(19) of Plasmodium vivax in Saimiri boliviensis monkeys. Am J Trop Med Hyg 60 : 350–356. [Google Scholar]
  35. Putaporntip C, Jongwutiwes S, Sakihama N, Ferreira MU, Kho WG, Kaneko A, Kanbara H, Hattori T, Tanabe K, 2002. Mosaic organization and heterogeneity in frequency of allelic recombination of the Plasmodium vivax merozoite surface protein-1 locus. Proc Natl Acad Sci USA 99 : 16348–16353. [Google Scholar]
  36. Holder AA, 1988. The precursor to major merozoite surface antigens: structure and role in immunity. Prog Allergy 41 : 72–97. [Google Scholar]
  37. Blackman MJ, Heidrich HG, Donachie S, McBride JS, Holder AA, 1990. A single fragment of a malaria merozoite surface protein remains on the parasite during red cell invasion and is the target of invasion-inhibiting antibodies. J Exp Med 172 : 379–382. [Google Scholar]
  38. Guevara Patino JA, Holder AA, McBride JS, Blackman MJ, 1997. Antibodies that inhibit malaria merozoite surface protein-1 processing and erythrocyte invasion are blocked by naturally acquired human antibodies. J Exp Med 186 : 1689–1699. [Google Scholar]
  39. Spencer Valero LM, Ogun SA, Fleck SL, Ling IT, Scott-Finnigan TJ, Blackman MJ, Holder AA, 1998. Passive immunization with antibodies against three distinct epitopes on Plasmodium yoelii merozoite surface protein 1 suppresses parasitemia. Infect Immun 66 : 3925–3930. [Google Scholar]
  40. Stowers AW, Cioce V, Shimp RL, Lawson M, Hui G, Muratova O, Kaslow DC, Robinson R, Long CA, Miller LH, 2001. Efficacy of two alternate vaccines based on Plasmodium falciparum merozoite surface protein 1 in an Aotus challenge trial. Infect Immun 69 : 1536–1546. [Google Scholar]
  41. Daubenberger CA, Nickel B, Ciatto C, Grutter MG, Poltl-Frank F, Rossi L, Siegler U, Robinson J, Kashala O, Patarroyo ME, Pluschke G, 2002. Amino acid dimorphism and parasite immune evasion: cellular immune responses to a promiscuous epitope of Plasmodium falciparum merozoite surface protein 1 displaying dimorphic amino acid polymorphism are highly constrained. Eur J Immunol 32 : 3667–3677. [Google Scholar]
  42. Roshanravan B, Kari E, Gilman RH, Cabrera L, Lee E, Metcalfe J, Calderon M, Lescano AG, Montenegro SH, Calampa C, Vinetz JM, 2003. Endemic malaria in the Peruvian Amazon region of Iquitos. Am J Trop Med Hyg 69 : 45–52. [Google Scholar]
  43. Tham JM, Lee SH, Tan TMC, Ting RCY, Kara UAK, 1999. Detection and species determination of malaria parasites by PCR: comparison with microscopy and with ParaSight-F and ICT Malaria Pf tests in a clinical environment. J Clin Microbiol 37 : 1269–1273. [Google Scholar]
  44. del Portillo HA, Longacre S, Khouri E, David PH, 1991. Primary structure of the merozoite surface antigen 1 of Plasmodium vivax reveals sequences conserved between different Plasmodium species. Proc Natl Acad Sci USA 88 : 4030–4034. [Google Scholar]
  45. Rawlins SC, Tiwari T, Chadee DD, Validum L, Alexander H, Nazeer R, Rawlins SR, 2001. American cutaneous leishmaniasis in Guyana, South America. Ann Trop Med Parasitol 95 : 245–251. [Google Scholar]
  46. Chadee DD, Rawlins SC, Tiwari TS, 2003. Short communication: concomitant malaria and filariasis infections in Georgetown, Guyana. Trop Med Int Health 8 : 140–143. [Google Scholar]
  47. Rawlins SC, Lammie P, Tiwari T, Pons P, Chadee DD, Oostburg BF, Baboolal S, 2000. Lymphatic filariasis in the Caribbean region: the opportunity for its elimination and certification. Rev Panam Salud Publica 7 : 319–324. [Google Scholar]
  48. Lindo JF, Validum L, Ager AL, Campa A, Cuadrado RR, Cummings R, Palmer CJ, 2002. Intestinal parasites among young children in the interior of Guyana. West Indian Med J 51 : 25–27. [Google Scholar]
  49. Palmer CJ, Validum L, Loeffke B, Laubach HE, Mitchell C, Cummings R, Cuadrado RR, 2002. HIV prevalence in a gold mining camp in the Amazon region, Guyana. Emerg Infect Dis 8 : 330–331. [Google Scholar]
  50. Palmer CJ, Validum L, Vorndam VA, Clark GG, Validum C, Cummings R, Lindo JF, Ager AL, Cuadrado RR, 1999. Dengue in Guyana. Lancet 354 : 304. [Google Scholar]
  51. Palmer CJ, Validum L, Lindo J, Campa A, Validum C, Makler M, Cuadrado RR, Ager A, 1999. Field evaluation of the OptiMAL® rapid malaria diagnostic test during anti-malarial therapy in Guyana. Trans R Soc Trop Med Hyg 93 : 517–518. [Google Scholar]
  52. Escalada RP, 2005. Malaria in Guyana. PAHO Meeting of National Directors of Epidemiology and Malaria Programs, San Jose, Costa Rica <http://www.paho.org>.
  53. Phillips EJ, Keystone JS, Kain KC, 1996. Failure of combined chloroquine and high-dose primaquine therapy for Plasmodium vivax malaria acquired in Guyana, South America. Clin Infect Dis 23 : 1171–1173. [Google Scholar]
  54. Machado RL, de Figuereido Filho AF, Calvosa VS, Figueredo MC, Nascimento JM, Povoa MM, 2003. Correlation between Plasmodium vivax variants in Belem, Para State, Brazil and symptoms and clearance of parasitaemia. Braz J Infect Dis 7 : 175–177. [Google Scholar]
  55. Payne D, 1988. Use and limitations of light microscopy for diagnosing malaria at the primary health care level. Bull World Health Org 66 : 621–626. [Google Scholar]
  56. Mangold KA, Manson RU, Koay ESC, Stephens L, Regner M, Thomson RB Jr, Peterson LR, Kaul KL, 2005. Real-time PCR for detection and identification of Plasmodium spp. J Clin Microbiol 43 : 2435–2440. [Google Scholar]
  57. Gonzalez-Ceron L, Rodriguez MH, Nettel JC, Villarreal C, Kain KC, Hernandez JE, 1999. Differential susceptibilities of Anopheles albimanus and Anopheles pseudopunctipennis to infections with coindigenous Plasmodium vivax variants VK210 and VK247 in southern Mexico. Infect Immun 67 : 410–412. [Google Scholar]
  58. Laubach HE, Validum L, Bonilla JA, Agar A, Cummings R, Mitchell C, Cuadrado RR, Palmer CJ, 2001. Identification of Anopheles aquasalis as a possible vector of malaria in Guyana, South America. West Indian Med J 50 : 319–321. [Google Scholar]

Data & Media loading...

  • Received : 07 Apr 2006
  • Accepted : 20 Jul 2006

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error