Volume 75, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Malaria transmission from humans to mosquitoes is modulated by human host immune factors. Understanding mechanisms by which the human host response may impair parasite infectivity for mosquitoes has direct implications for the development of transmission-blocking vaccines. We hypothesized that despite a low transmission intensity of malaria in the Peruvian Amazon region of Iquitos, transmission-blocking immunity against might be common, given an unexpectedly high proportion of asymptomatic parasitemic individuals in this region. To test this hypothesis, the ability of symptomatic malaria patients to experimentally infect wild-caught outbred mosquitoes was tested using the indirect membrane feeding technique. Only half (52/102) of parasitemic patients successfully infected mosquitoes. Transmitters were more likely to have gametocytes (OR 6.35, = 0.003), high parasitemia (OR 3.79, = 0.024), and, in terms of basic clinical parameters, a slower pulse rate (mean ± SD: 82.3 ± 12.3 versus 88.7 ± 13.5, = 0.016) than non-transmitters. Log gametocytemia and log real-time reverse transcriptase PCR quantifying gametocytes were significantly and positively correlated with oocyst counts (correlation coefficient 0.505, = 0.26, = 0.001). These experiments are the first to establish a system of determining transmission patterns in experimental infection of outbred natural neotropical malaria vectors in the Amazon region. Patients with inefficiently infect outbred mosquitoes, raising the possibility that some degree of naturally occurring transmission-blocking immunity is present on a population basis in the Peruvian Amazon, an area of low intensity of malaria transmission.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Mendis KN, Munesinghe YD, de Silva YN, Keragalla I, Carter R, 1987. Malaria transmission-blocking immunity induced by natural infections of Plasmodium vivax in humans. Infect Immun 55 : 369–372. [Google Scholar]
  2. Munesinghe YD, Mendis KN, Carter R, 1986. Anti-gamete antibodies block transmission of human vivax malaria to mosquitoes. Parasite Immunol 8 : 231–238. [Google Scholar]
  3. Mendis KN, David PH, Carter R, 1990. Human immune responses against sexual stages of malaria parasites: considerations for malaria vaccines. Int J Parasitol 20 : 497–502. [Google Scholar]
  4. Roeffen W, Geeraedts F, Eling W, Beckers P, Wizel B, Kumar N, Lensen T, Sauerwein R, 1995. Transmission blockade of Plasmodium falciparum malaria by anti-Pfs230-specific antibodies is isotype dependent. Infect Immun 63 : 467–471. [Google Scholar]
  5. Healer J, McGuinness D, Hopcroft P, Haley S, Carter R, Riley E, 1997. Complement-mediated lysis of Plasmodium falciparum gametes by malaria-immune human sera is associated with antibodies to the gamete surface antigen Pfs230. Infect Immun 65 : 3017–3023. [Google Scholar]
  6. Lensen AH, Bolmer-Van de Vegte M, van Gemert GJ, Eling WM, Sauerwein RW, 1997. Leukocytes in a Plasmodium falciparum-infected blood meal reduce transmission of malaria to Anopheles mosquitoes. Infect Immun 65 : 3834–3837. [Google Scholar]
  7. Sattabongkot J, Maneechai N, Rosenberg R, 1991. Plasmodium vivax: gametocyte infectivity of naturally infected Thai adults. Parasitology 102 : 27–31. [Google Scholar]
  8. Mendis K, Sina BJ, Marchesini P, Carter R, 2001. The neglected burden of Plasmodium vivax malaria. Am J Trop Med Hyg 64 : 97–106. [Google Scholar]
  9. Roberts DR, Laughlin LL, Hsheih P, Legters LJ, 1997. DDT, global strategies, and a malaria control crisis in South America. Emerg Infect Dis 3 : 295–302. [Google Scholar]
  10. Nosten F, McGready R, Simpson JA, Thwai KL, Balkan S, Cho T, Hkirijaroen L, Looareesuwan S, White NJ, 1999. Effects of Plasmodium vivax malaria in pregnancy. Lancet 354 : 546–549. [Google Scholar]
  11. Vittor AY, Gilman RH, Tielsch J, Glass G, Shields T, Lozano WS, Pinedo-Cancino V, Patz JA, 2006. The effect of deforestation on the human-biting rate of Anopheles darlingi, the primary vector of falciparum malaria in the Peruvian Amazon. Am J Trop Med Hyg 74 : 3–11. [Google Scholar]
  12. Aramburu Guarda J, Ramal Asayag C, Witzig R, 1999. Malaria reemergence in the Peruvian Amazon region. Emerg Infect Dis 5 : 209–215. [Google Scholar]
  13. Schoeler GB, Flores-Mendoza C, Fernandez R, Davila JR, Zyzak M, 2003. Geographical distribution of Anopheles darlingi in the Amazon Basin region of Peru. J Am Mosq Control Assoc 19 : 286–296. [Google Scholar]
  14. Flores-Mendoza C, Fernandez R, Escobedo-Vargas KS, Vela-Perez Q, Schoeler GB, 2004. Natural Plasmodium infections in Anopheles darlingi and Anopheles benarrochi (Diptera: Culicidae) from eastern Peru. J Med Entomol 41 : 489–494. [Google Scholar]
  15. Bottius E, Guanzirolli A, Trape JF, Rogier C, Konate L, Druilhe P, 1996. Malaria: even more chronic in nature than previously thought; evidence for subpatent parasitaemia detectable by the polymerase chain reaction. Trans R Soc Trop Med Hyg 90 : 15–19. [Google Scholar]
  16. Camargo EP, Alves F, Pereira da Silva LH, 1999. Symptomless Plasmodium vivax infections in native Amazonians. Lancet 353 : 1415–1416. [Google Scholar]
  17. Camargo LM, Noronha E, Salcedo JM, Dutra AP, Krieger H, Pereira da Silva LH, Camargo EP, 1999. The epidemiology of malaria in Rondonia (Western Amazon region, Brazil): study of a riverine population. Acta Trop 72 : 1–11. [Google Scholar]
  18. Alves FP, Durlacher RR, Menezes MJ, Krieger H, Silva LH, Camargo EP, 2002. High prevalence of asymptomatic Plasmodium vivax and Plasmodium falciparum infections in native Amazonian populations. Am J Trop Med Hyg 66 : 641–648. [Google Scholar]
  19. Roshanravan B, Kari E, Gilman RH, Cabrera L, Lee E, Metcalfe J, Calderon M, Lescano AG, Montenegro SH, Calampa C, Vinetz JM, 2003. Endemic malaria in the Peruvian Amazon region of Iquitos. Am J Trop Med Hyg 69 : 45–52. [Google Scholar]
  20. Branch O, Casapia WM, Gamboa DV, Hernandez JN, Alava FF, Roncal N, Alvarez E, Perez EJ, Gotuzzo E, 2005. Clustered local transmission and asymptomatic Plasmodium falciparum and Plasmodium vivax malaria infections in a recently emerged, hypoendemic Peruvian Amazon community. Malar J 4 : 27. [Google Scholar]
  21. Marrelli MT, Honorio NA, Flores-Mendoza C, Lourencode-Oliveira R, Marinotti O, Kloetzel JK, 1999. Comparative susceptibility of two members of the Anopheles oswaldoi complex, An. oswaldoi and An. konderi, to infection by Plasmodium vivax. Trans R Soc Trop Med Hyg 93 : 381–384. [Google Scholar]
  22. Drakeley CJ, Jawara M, Targett GA, Walraven G, Obisike U, Coleman R, Pinder M, Sutherland CJ, 2004. Addition of arte-sunate to chloroquine for treatment of Plasmodium falciparum malaria in Gambian children causes a significant but short-lived reduction in infectiousness for mosquitoes. Trop Med Int Health 9 : 53–61. [Google Scholar]
  23. Tsuboi T, Kaslow DC, Gozar MM, Tachibana M, Cao YM, Torii M, 1998. Sequence polymorphism in two novel Plasmodium vivax ookinete surface proteins, Pvs25 and Pvs28, that are malaria transmission-blocking vaccine candidates. Mol Med 4 : 772–782. [Google Scholar]
  24. Sattabongkot J, Maneechai N, Phunkitchar V, Eikarat N, Khuntirat B, Sirichaisinthop J, Burge R, Coleman RE, 2003. Comparison of artificial membrane feeding with direct skin feeding to estimate the infectiousness of Plasmodium vivax gametocyte carriers to mosquitoes. Am J Trop Med Hyg 69 : 529–535. [Google Scholar]
  25. Alves FP, Gil LH, Marrelli MT, Ribolla PE, Camargo EP, Da Silva LH, 2005. Asymptomatic carriers of Plasmodium spp. as infection source for malaria vector mosquitoes in the Brazilian Amazon. J Med Entomol 42 : 777–779. [Google Scholar]
  26. Sattabongkot J, Tsuboi T, Hisaeda H, Tachibana M, Suwanabun N, Rungruang T, Cao YM, Stowers AW, Sirichaisinthop J, Coleman RE, Torii M, 2003. Blocking of transmission to mosquitoes by antibody to Plasmodium vivax malaria vaccine candidates Pvs25 and Pvs28 despite antigenic polymorphism in field isolates. Am J Trop Med Hyg 69 : 536–541. [Google Scholar]
  27. Coleman RE, Kumpitak C, Ponlawat A, Maneechai N, Phunkitchar V, Rachapaew N, Zollner G, Sattabongkot J, 2004. Infectivity of asymptomatic Plasmodium-infected human populations to Anopheles dirus mosquitoes in western Thailand. J Med Entomol 41 : 201–208. [Google Scholar]
  28. Anstey NM, Weinberg JB, Hassanali MY, Mwaikambo ED, Manyenga D, Misukonis MA, Arnelle DR, Hollis D, McDonald MI, Granger DL, 1996. Nitric oxide in Tanzanian children with malaria: inverse relationship between malaria severity and nitric oxide production/nitric oxide synthase type 2 expression. J Exp Med 184 : 557–567. [Google Scholar]
  29. Su Z, Stevenson MM, 2000. Central role of endogenous gamma interferon in protective immunity against blood-stage Plasmodium chabaudi AS infection. Infect Immun 68 : 4399–4406. [Google Scholar]
  30. Balmer P, Phillips HM, Maestre AE, McMonagle FA, Phillips RS, 2000. The effect of nitric oxide on the growth of Plasmodium falciparum, P. chabaudi and P. berghei in vitro. Parasite Immunol 22 : 97–106. [Google Scholar]
  31. Motard A, Landau I, Nussler A, Grau G, Baccam D, Mazier D, Targett GA, 1993. The role of reactive nitrogen intermediates in modulation of gametocyte infectivity of rodent malaria parasites. Parasite Immunol 15 : 21–26. [Google Scholar]
  32. Graves PM, Burkot TR, Carter R, Cattani JA, Lagog M, Parker J, Brabin BJ, Gibson FD, Bradley DJ, Alpers MP, 1988. Measurement of malarial infectivity of human populations to mosquitoes in the Madang area, Papua, New Guinea. Parasitology 96 : 251–263. [Google Scholar]
  33. Ramsey JM, Salinas E, Rodriguez MH, Beaudoin RL, 1994. Effects of transmission-blocking immunity on Plasmodium vivax infections in Anopheles albimanus populations. J Parasitol 80 : 88–92. [Google Scholar]
  34. Gamage-Mendis AC, Rajakaruna J, Carter R, Mendis KN, 1992. Transmission blocking immunity to human Plasmodium vivax malaria in an endemic population in Kataragama, Sri Lanka. Parasite Immunol 14 : 385–396. [Google Scholar]
  35. Somboon P, Suwonkerd W, Lines JD, 1994. Susceptibility of Thai zoophilic Anophelines and suspected malaria vectors to local strains of human malaria parasites. Southeast Asian J Trop Med Public Health 25 : 766–770. [Google Scholar]
  36. Ramsey JM, Salinas E, Rodriguez MH, 1996. Acquired transmission-blocking immunity to Plasmodium vivax in a population of southern coastal Mexico. Am J Trop Med Hyg 54 : 458–463. [Google Scholar]
  37. Chan AS, Rodriguez MH, Torres JA, Rodriguez MC, Villarreal C, 1994. Susceptibility of three laboratory strains of Anopheles albimanus (Diptera: Culicidae) to coindigenous Plasmodium vivax in southern Mexico. J Med Entomol 31 : 400–403. [Google Scholar]
  38. Malkin EM, Diemert DJ, McArthur JH, Perreault JR, Miles AP, Giersing BK, Mullen GE, Orcutt A, Muratova O, Awkal M, Zhou H, Wang J, Stowers A, Long CA, Mahanty S, Miller LH, Saul A, Durbin AP, 2005. Phase 1 clinical trial of apical membrane antigen 1: an asexual blood-stage vaccine for Plasmodium falciparum malaria. Infect Immun 73 : 3677–3685. [Google Scholar]

Data & Media loading...

  • Received : 17 Mar 2006
  • Accepted : 15 Jun 2006

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error