Volume 75, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


biting midges serve as vectors of pathogens affecting humans and domestic animals. is a vector of several arboviruses in North American that cause substantial economic losses to the US livestock industry. Previous studies showed that saliva, like the saliva of many hematophagous arthropods, contains numerous pharmacological agents that affect hemostasis and early events in the inflammatory response, which may enhance the infectivity of -borne pathogens. This paper reports on the immunomodulatory properties of salivary gland extracts on murine immune cells and discusses the possible immunomodulatory role of saliva in vesicular stomatitis virus infection of vertebrate hosts. Splenocytes treated with mitogens were significantly affected in their proliferative response, and peritoneal macrophages secreted significantly less NO. A 66-kDa glycoprotein was purified from salivary gland extract, which may be in part responsible for these observations and may be considered as a vaccine candidate.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Mercer DR, Castillo-Pizango MJ, 2005. Changes in relative species compositions of biting midges (Diptera: ceratopogonidae) and an outbreak of Oropouche virus in Iquitos, Peru. J Med Entomol 42 : 554–558. [Google Scholar]
  2. Tabachnick WJ, 1996. Culicoides variipennis and bluetongue—virus epidemiology in the United States. Annu Rev Entomol 41 : 23–43. [Google Scholar]
  3. Price DA, Hardy WT, 1954. Isolation of the bluetongue virus from Texas sheep—Culicoides shown to be a vector. J Am Vet Med Assoc 124 : 255–258. [Google Scholar]
  4. Titus RG, Bishop JV, Mejia JS, 2006. The immunomodulatory factors of arthropod saliva and the potential for these factors to serve as vaccine targets to prevent pathogen transmission. Parasite Immunol 28 : 131–141. [Google Scholar]
  5. Andersen JF, Gudderra NP, Francischetti IM, Ribeiro JM, 2005. The role of salivary lipocalins in blood feeding by Rhodnius prolixus. Arch Insect Biochem Physiol 58 : 97–105. [Google Scholar]
  6. Champagne DE, 2004. Antihemostatic strategies of blood-feeding arthropods. Curr Drug Targets Cardiovasc Haematol Disord 4 : 375–396. [Google Scholar]
  7. de Almeida MC, Vilhena V, Barral A, Barral-Netto M, 2003. Leishmanial infection: analysis of its first steps. A review. Mem Inst Oswaldo Cruz 98 : 861–870. [Google Scholar]
  8. Nuttall PA, Labuda M, 2003. Dynamics of infection in tick vectors and at the tick-host interface. Review. Adv Virus Res 60 : 233–272. [Google Scholar]
  9. Ribeiro JM, Francischetti IM, 2003. Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annu Rev Entomol 48 : 73–88. [Google Scholar]
  10. Schoeler GB, Wikel SK, 2001. Modulation of host immunity by haematophagous arthropods. Ann Trop Med Parisitol 95 : 755–771. [Google Scholar]
  11. Tabachnick WJ, 2000. Pharmacological factors in the saliva of blood-feeding insects. Ann N Y Acad Sci 916 : 444–452. [Google Scholar]
  12. Kamhawi S, 2000. The biological and immunomodulatory properties of sand fly saliva and its role in the establishment of Leishmania infections. Microbes Infect 2 : 1765–1773. [Google Scholar]
  13. Bowman AS, Coons LB, Needham GR, Sauer JR, 1997. Tick saliva: Recent advances and implications for vector competence. Med Vet Entomol 11 : 277–285. [Google Scholar]
  14. Cupp EW, Cupp MS, 1997. Black fly (Diptera: Simuliidae) salivary secretions importance in vector competence and disease. J Med Entomol 34 : 87–94. [Google Scholar]
  15. Drolet BS, Campbell CL, Stuart MA, Wilson WC, 2005. Vector competence of Culicoides sonorensis (Diptera:Ceratopogonidae) for vesicular stomatitis virus. J Med Entomol 42 : 409–418. [Google Scholar]
  16. Nunamaker RA, Pérez de León AA, Campbell CL, Lonning SM, 2000. Oral infection of Culicoides sonorensis (Diptera:Ceratopogonidae) by vesicular stomatitis virus. J Med Entomol 37 : 784–786. [Google Scholar]
  17. Pérez de León AA, Tabachnick WJ, 2006a. Transmission of vesicular stomatitis virus to cattle by the biting midge, Culicoides sonorensis (Diptera: Ceratopogonidae). J Med Entomol 43 : 323–329. [Google Scholar]
  18. Pérez de León AA, O’Toole D, Tabachnick WJ, 2006. Infection of guinea pigs with vesicular stomatitis virus transmitted by the biting midge, Culicoides sonorensis (Diptera: Ceratopogonidae). J Med Entomol 43 : 568–573. [Google Scholar]
  19. Pérez de León AA, Ribeiro JM, Tabachnick WJ, Valenzuela JG, 1997. Identification of a salivary vasodilator in the primary North American vector of bluetongue viruses, Culicoides variipennis. Am J Trop Med Hyg 57 : 375–381. [Google Scholar]
  20. Pérez de León AA, Valenzuela JG, Tabachnick WJ, 1998. Anticoagulant activity in salivary glands of the insect vector Culicoides variipennis sonorensis by an inhibitor of factor Xa. Exp Parasitol 88 : 121–130. [Google Scholar]
  21. Pérez de León AA, Tabachnick WJ, 1996. Apyrase activity and adenosine diphosphate induced platelet aggregation inhibition by the salivary gland proteins of Culicoides variipennis, the North American vector of bluetongue viruses. Vet Parasitol 61 : 327–338. [Google Scholar]
  22. Pérez de León AA, O’Toole TD, Schmidtmann ET, Titus RG, Tabachnick WJ, 1997. Insect blood-feeding and the transmission of arboviruses and vesiculoviruses. Proc US Animal Health Assoc 101 : 29–34. [Google Scholar]
  23. Hunt G, 1994. A procedural manual for the large-scale rearing of the biting midge, Culicoides variipennis (Diptera: Ceratopogonidae). US Dep Agric Research Service Tech Bull 121 : 1–68. [Google Scholar]
  24. Urioste S, Hall LR, Telford SR, Titus RG, 1994. Saliva of the Lyme disease vector, Ixodes dammini, blocks cell activation by a nonprostaglandin E2-dependent mechanism. J Exp Med 180 : 1077–1086. [Google Scholar]
  25. Titus RG, Kelso A, Louis JA, 1984. Intracellular destruction of Leishmania tropica by macrophages activated with macrophage activating factor/interferon. Clin Exp Immunol 55 : 157–165. [Google Scholar]
  26. Chakkalath HR, Titus RG, 1994. Leishmania major-parasitized macrophages augment Th2-type T cell activation. J Immunol 153 : 4378–4387. [Google Scholar]
  27. Green SJ, Nacy CA, Meltzer MS, 1991. Cytokine-induced synthesis of nitrogen oxides in macrophages: A protective host response to Leishmania and other intracellular pathogens. J Leukoc Biol 50 : 93–103. [Google Scholar]
  28. Liew FY, Cox FE, 1991. Nonspecific defense mechanism: The role of nitric oxide. Immunol Today 12 : A17–A21. [Google Scholar]
  29. Mauel J, Corradin SB, Buchmuller Rouiller Y, 1991. Nitrogen and oxygen metabolites and the killing of Leishmania by activated murine macrophages. Res Immunol 142 : 577–580. [Google Scholar]
  30. Morris RV, Shoemaker CB, David JR, Lanzaro GC, Titus RG, 2001. Sandfly maxadilan exacerbates infection with Leishmania major and vaccinating against it protects against L. major infection. J Immunol 167 : 5226–5230. [Google Scholar]
  31. Wikel SK, Ramachandra RN, Bergman DK, Burkot TR, Piesman J, 1997. Infestation with pathogen-free nymphs of the tick Ixodes scapularis induces host resistance to transmission of Borrelia burgdorferi by ticks. Infect Immun 65 : 335–338. [Google Scholar]
  32. Davies CR, Mazloumi Gavgani AS, 1999. Age, acquired immunity and the risk of visceral leishmaniasis: a prospective study in Iran. Parasitology 119 : 247–257. [Google Scholar]
  33. Gomes RB, Brodskyn C, de Oliveira CI, Costa J, Miranda JC, Caldas A, Valenzuela JG, Barral-Netto M, Barral A, 2002. Seroconversion against Lutzomyia longipalpis saliva concurrent with the development of anti-Leishmania chagasi delayed-type hypersensitivity. J Infect Dis 186 : 1530–1534. [Google Scholar]
  34. Gallucci S, Lolkema M, Matzinger P, 1999. Natural adjuvants: Endogenous activators of dendritic cells. Nat Med 5 : 1249–1255. [Google Scholar]
  35. Shi Y, Zheng W, Rock KL, 2000. Cell injury releases endogenous adjuvants that stimulate cytotoxic T cell responses. Proc Natl Acad Sci USA 97 : 14590–14595. [Google Scholar]
  36. Scaffidi P, Misteli T, Bianchi ME, 2002. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418 : 191–195. [Google Scholar]
  37. Hollister J, Grabenhorst E, Nimtz M, Conradt H, Jarvis DL, 2002. Engineering the protein N-glycosylation pathway in insect cells for production of biantennary, complex N-glycans. Biochemistry 41 : 15093–15104. [Google Scholar]
  38. Dinglasan RR, Valenzuela JG, Azad AF, 2005. Sugar epitopes as potential universal disease transmission blocking targets. Insect Biochem Mol Biol 35 : 1–10. [Google Scholar]

Data & Media loading...

  • Received : 03 May 2006
  • Accepted : 16 May 2006

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error