Volume 75, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


The colony overlay procedure for peptidases (COPP) is a simple, fluorogenic assay that can rapidly detect and quantify and in well water. Cleavage of the substrate L-lysyl-7-amino-4-trifluoromethylcoumarin by enzymes present in and species produces fluorescent foci on cellulose acetate membranes exposed to long-wave ultraviolet light. O1, O139, O155, and were readily detected using this procedure, whereas and other non- pathogens did not produce fluorescence. The assay is practical for assessing the relative safety of well water in areas that have experienced catastrophic devastation from natural disasters, acts of war, or civil strife and may help curb outbreaks of cholera and other enteric illnesses in affected areas. In tropical climates, the procedure may be adapted for use in areas without electricity.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Ramakrihna BS, Kang G, Rajan DP, Mathan M, Mathan VI, 1996. Isolation of Vibrio cholerae O139 from drinking water supply during an epidemic of cholera. Health 1 : 854–858. [Google Scholar]
  2. Ries AA, Vugia DJ, Beingolea L, Papacios AM, Vasquez E, Wells JG, Garcia Basa N, Swerdlow DL, Pollack M, Bean NH, 1992. Cholera in Piura, Peru: a modern urban epidemic. J Infect Dis 166 : 1429–1433. [Google Scholar]
  3. Swerdlow DL, Mintz ED, Rodriguez M, Tejada E, Ocampo C, Espejo L, Greene KD, Saldana W, Seminario L, Tauxe RV, 1992. Waterborne transmission of epidemic cholerae in Trujillo, Peru: lessons for a continent at risk. Lancet 340 : 28–33. [Google Scholar]
  4. Taneja N, Kaur J, Sharma K, Singh M, Kalra JK, Sharma NM, Sharma M, 2003. A recent outbreak of cholera due to Vibrio cholerae O1 Ogawa in & around Chindigarh, North India. Indian J Med Res 117 : 243–246. [Google Scholar]
  5. Tauxe RV, Holmberg SD, Dodin A, Wells JV, Blake PA, 1988. Epidemic cholera in Mali: high mortality and multiple routes of transmission in a famine area. Epidemiol Infect 100 : 279–289. [Google Scholar]
  6. Kaper JB, Morris JG, Levine MM, 1995. Cholera. Clin Microbiol Rev 8 : 48–86. [Google Scholar]
  7. Reeves PR, Lan R, 1998. Cholera in the 1990s. Br Med Bull 54 : 611–623. [Google Scholar]
  8. Sack DA, Sack RB, Nair GB, Siddique AK, 2004. Cholera. Lancet 363 : 223–233. [Google Scholar]
  9. Hoge CW, Bodhidatta L, Echeverria P, Deesuwan M, Kitporka P, 1996. Epidemiologic study of Vibrio cholerae O1 and O139 in Thailand: at the advancing edge of the eighth pandemic. Am J Epidemiol 143 : 263–268. [Google Scholar]
  10. Anonymous, 2003. Cholera epidemic after increased civil conflict—Monrovia, Liberia, June–September 2003. Morb Mortal Wkly Rep 52 : 1093–1095. [Google Scholar]
  11. Richards GP, Hammer CH, Garfield MK, Parveen S, 2004. Characterization of a lysyl aminopeptidase activity associated with phosphoglucose isomerase of Vibrio vulnificus. Biochim Biophys Acta 1700 : 219–229. [Google Scholar]
  12. Richards GP, Parveen S, 2005. A survey for phosphoglucose isomerase with lysyl aminopeptidase activity in Vibrionaceae and non-Vibrio pathogens. Biochim Biophys Acta 1748 : 128–133. [Google Scholar]
  13. Richards GP, 2004. Structural and functional analyses of phosphoglucose isomerase from Vibrio vulnificus and its lysyl aminopeptidase activity. Biochim Biophys Acta 1702 : 89–102. [Google Scholar]
  14. Richards GP, Watson MA, Parveen S, 2005. Development of a simple and rapid fluorogenic procedure for the identification of Vibrionaceae family members. Appl Environ Microbiol 71 : 3524–3527. [Google Scholar]
  15. Kueh CS, Grohmann GS, 1989. Recovery of viruses and bacteria in waters off Bondi beach: a pilot study. Med J Aust 151 : 632–638. [Google Scholar]
  16. Picard B, Arlet G, Goullet P, 1984. Aeromonas hydrophila septicemia. Epidemiologic aspects. 15 cases. Presse Med 13 : 1203–1205. [Google Scholar]
  17. Wadstrom T, Ljungh A, 1991. Aeromonas and Plesiomonas as food- and waterborne pathogens. Int J Food Microbiol 12 : 303–311. [Google Scholar]
  18. El-Taweel GE, Shaban AM, 2001. Microbiological quality of drinking water at eight water treatment plants. Int J Environ Health Res 11 : 285–290. [Google Scholar]
  19. Reiff F, Roses M, Venczel L, Quick R, Will V, 1996. Low cost safe water for the world: a practical interim solution. Health Policy (New York) 17 : 389–408. [Google Scholar]
  20. Quick R, Venczel L, Gonzalez O, Mintz E, Highsmith A, Espada A, Damiani E, Bean N, De Hannover R, Tauxe R, 1996. Narrow-mouthed water storage vessels and in situ chlorination in a Bolivian community: a simple method to improve drinking water quality. Am J Trop Med Hyg 54 : 511–516. [Google Scholar]
  21. Sack DA, Tacket CO, Cohen MB, Sack RB, Losonsky GA, Shimko J, Nataro JP, Edelman R, Levine MM, Giannella RA, Schiff G, Lang D, 1998. Validation of a volunteer model of cholera with frozen bacteria as the challenge. Infect Immun 66 : 1968–1972. [Google Scholar]
  22. Pfeffer C, Oliver JD, 2003. A comparison of thiosulphate-citrate-bile-salts-sucrose (TCBS) agar and thiosulphate-chloride-iodide (TCI) agar for the isolation of Vibrio species from estuarine environments. Lett Appl Microbiol 36 : 150–151. [Google Scholar]

Data & Media loading...

  • Received : 19 Jan 2006
  • Accepted : 08 May 2006

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error