1921
Volume 75, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

The reasons for the resurgence of malaria in the African highlands have been subject of debate. Because vector abundance is important for malaria transmission, gaining a better understanding of vector biology is a key to understanding the mechanisms of highland malaria. We studied vector productivity in relation to the highland environment and compared productivity between lowland and highland sites. We found lower vector productivity in the highland and in wetlands where the temperature was lower. Immature stage development time was significantly longer in the highland site. Development time was significantly shorter in aquatic habitats in cultivated areas than in wetlands, and survival rate was significantly higher in cultivated areas. Fecundity was significantly lower in the highland site. These findings suggest that changes in local temperature and land use contribute to an increase of malaria vectors in the highland.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.2006.75.448
2006-09-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/14761645/75/3/0750448.html?itemId=/content/journals/10.4269/ajtmh.2006.75.448&mimeType=html&fmt=ahah

References

  1. Malakooti MA, Biomndo K, Shanks GD, 1998. Reemergence of epidemic malaria in the highlands of western Kenya. Emerg Infect Dis 4 : 671–676. [Google Scholar]
  2. Shanks GD, Biomndo K, Hay SI, Snow RW, 2000. Changing patterns of clinical malaria since 1965 among a tea estate population located in the Kenyan highlands. Trans R Soc Trop Med Hyg 94 : 253–255. [Google Scholar]
  3. Garnham PCC, 1928. The incidence of malaria at high altitudes. J Natl Malaria Soc 7 : 275–284. [Google Scholar]
  4. Roberts JM, 1964. The control of epidemic malaria in the highlands of western Kenya. III. After the campaign. J Trop Med Hyg 67 : 230–237. [Google Scholar]
  5. Lindblade KA, Walker ED, Onapa AW, Katungu J, Wilson ML, 2000. Land use change alters malaria transmission parameters by modifying temperature in a highland area of Uganda. Trop Med Int Health 5 : 263–274. [Google Scholar]
  6. Minakawa N, Sonye G, Mogi M, Githeko A, Yan G, 2002. The effects of climatic factors on the distribution and abundance of malaria vectors in Kenya. J Med Entomol 39 : 833–841. [Google Scholar]
  7. Lindblade KA, Walker ED, Wilson ML, 2000. Early warning of malaria epidemics in African highlands using Anopheles (Diptera: Culicidae) indoor resting density. J Med Entomol 37 : 664–674. [Google Scholar]
  8. Bodker R, Akida J, Shayo D, Kisinza W, Msangeni HA, Pedersen EM, Lindsay SW, 2003. Relationship between altitude and intensity of malaria transmission in the Usambara Mountains, Tanzania. J Med Entomol 40 : 706–717. [Google Scholar]
  9. Beier JC, Perkins PV, Onyango FK, Gargan TP, Oster CN, Whitmire RE, Koech DK, Roberts CR, 1990. Characterization of malaria transmission by Anopheles (Diptera: Culicidae) in western Kenya in preparation for malaria vaccine trials. J Med Entomol 27 : 570–577. [Google Scholar]
  10. Githeko AK, Service MW, Mbogo CM, Atieli FK, Juma FO, 1993. Plasmodium falciparum sporozoite and entomological inoculation rates at the Ahero rice irrigation scheme and the Miwani sugar-belt in western Kenya. Ann Trop Med Parasitol 87 : 379–391. [Google Scholar]
  11. John CC, Ouma JH, Sumba PO, Hollingdale MR, Kazura JW, King CL, 2002. Lymphocyte proliferation and antibody responses to Plasmodium falciparum liver-stage antigen-1 in a highland area of Kenya with seasonal variation in malaria transmission. Am J Trop Med Hyg 66 : 372–378. [Google Scholar]
  12. John CC, Koech DK, Sumba PO, Ouma JH, 2004. Risk of Plasmodium falciparum infection during a malaria epidemic in highland Kenya, 1997. Acta Trop 92 : 55–61. [Google Scholar]
  13. Smith T, Charlwood JD, Kihonda J, Mwankusye S, Billingsley P, Meuwissen J, Lyimo E, Takken W, Teuscher T, Tanner M, 1993. Absence of seasonal variation in malaria parasitaemia in an area of intense seasonal transmission. Acta Trop 54 : 55–72. [Google Scholar]
  14. Mouchet J, Carnevale P, 1997. Impact of changes in the environment on vector-transmitted diseases. Sante 7 : 263–269. [Google Scholar]
  15. Lindsay SW, Martens WJ, 1998. Malaria in the African highlands: Past, present and future. Bull World Health Organ 76 : 33–45. [Google Scholar]
  16. Mouchet J, Manguin S, Sircoulon J, Laventure S, Faye O, Onapa AW, Carnevale P, Julvez J, Fontenille D, 1998. Evolution of malaria in Africa for the past 40 years: Impact of climatic and human factors. J Am Mosq Control Assoc 14 : 121–130. [Google Scholar]
  17. Patz JA, Graczyk TK, Geller N, Vittor AY, 2000. Effects of environmental change on emerging parasitic diseases. Int J Parasitol 30 : 1395–1405. [Google Scholar]
  18. Minakawa N, Sonye G, Mogi M, Yan G, 2004. Habitat characteristics of Anopheles gambiae s.s. larvae in a Kenyan highland. Med Vet Entomol 18 : 301–305. [Google Scholar]
  19. Minakawa N, Munga S, Atieli F, Mushinzimana E, Zhou G, Githeko A, Yan G, 2005. Spatial distribution of anopheline larval habitats in western Kenyan highlands: Effects of land cover types and topography. Am J Trop Med Hyg 73 : 157–165. [Google Scholar]
  20. Abeku TA, van Oortmarssen GJ, Borsboom G, de Vlas SJ, Habbema JD, 2003. Spatial and temporal variations of malaria epidemic risk in Ethiopia: Factors involved and implications. Acta Trop 87 : 331–340. [Google Scholar]
  21. Zhou G, Minakawa N, Githeko AK, Yan G, 2004. Association between climate variability and malaria epidemics in the East African highlands. Proc Natl Acad Sci USA 101 : 2375–2380. [Google Scholar]
  22. Bayoh MN, Lindsay SW, 2003. Effect of temperature on the development of the aquatic stages of Anopheles gambiae sensu stricto (Diptera: Culicidae). Bull Entomol Res 93 : 375–381. [Google Scholar]
  23. Bayoh MN, Lindsay SW, 2004. Temperature-related duration of aquatic stages of the Afrotropical malaria vector mosquito Anopheles gambiae in the laboratory. Med Vet Entomol 18 : 174–179. [Google Scholar]
  24. Trape JF, Pison G, Spiegel A, Enel C, Rogier C, 2002. Combating malaria in Africa. Trends Parasitol 18 : 224–230. [Google Scholar]
  25. Killeen GF, Seyoum A, Knols BG, 2004. Rationalizing historical successes of malaria control in Africa in terms of mosquito resource availability management. Am J Trop Med Hyg 71 : 87–93. [Google Scholar]
  26. Loevinsohn ME, 1994. Climatic warming and increased malaria incidence in Rwanda. Lancet 343 : 714–718. [Google Scholar]
  27. Lindsay SW, Birley MH, 1996. Climate change and malaria transmission. Ann Trop Med Parasitol 90 : 573–588. [Google Scholar]
  28. Hay SI, Cox J, Rogers DJ, Randolph SE, Stern DI, Shanks GD, Myers MF, Snow RW, 2002. Climate change and the resurgence of malaria in the East African highlands. Nature 415 : 905–909. [Google Scholar]
  29. Githeko AK, Service MW, Mbogo CM, Atieli FK, Juma FO, 1994. Origin of blood meals in indoor and outdoor resting malaria vectors in western Kenya. Acta Trop 58 : 307–316. [Google Scholar]
  30. Gimnig JE, Ombok M, Otieno S, Kaufman MG, Vulule JM, Walker ED, 2002. Density-dependent development of Anopheles gambiae (Diptera: Culicidae) larvae in artificial habitats. J Med Entomol 39 : 162–172. [Google Scholar]
  31. Rogers DJ, Randolph SE, 2000. The global spread of malaria in a future, warmer world. Science 289 : 1763–1766. [Google Scholar]
  32. Garrett-Jones C, 1964. Prognosis for interruption of malaria transmission through assessment of the mosquito’s vectorial capacity. Nature 204 : 1173–1175. [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.2006.75.448
Loading
/content/journals/10.4269/ajtmh.2006.75.448
Loading

Data & Media loading...

  • Received : 22 Aug 2005
  • Accepted : 19 Mar 2006

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error