1921
Volume 75, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

females in a relatively isolated hut and all larvae from larval habitats within 100 m of the hut were collected in August 2001 in western Kenya. Among 42 aquatic habitats, 16 had larvae. Two hundred fifty larvae and 58 adults were genotyped using nine microsatellite markers to infer sibling relationship between the larvae and maternity between the females and larvae. The pairwise genetic relatedness of larvae per habitat ranged from −0.4112 to 0.9375, indicating that full siblings, half siblings, and genetically unrelated individuals presented at those habitats with multiple larvae. From a likelihood analysis, it was estimated that 56.6% of females had larvae in multiple habitats. These results substantiate that one female uses multiple breeding sites for oviposition, and thus, average genetic relatedness for breeding sites with high larval populations tends to be low.

Loading

Article metrics loading...

/content/journals/10.4269/ajtmh.2006.75.246
2006-08-01
2017-07-24
Loading full text...

Full text loading...

/deliver/fulltext/14761645/75/2/0750246.html?itemId=/content/journals/10.4269/ajtmh.2006.75.246&mimeType=html&fmt=ahah

References

  1. Gillies MT, Coetzee M, 1987. A supplement to the Anophelinae of Africa south of the Sahara. South African Inst Med Res 55 : 1–143.
  2. Pates H, Curtis C, 2005. Mosquito behavior and vector control. Annu Rev Entomol 50 : 53–70.
  3. McCrae AWR, 1983. Oviposition by African malaria vector mosquitoes I. Temporal activity pattern of caged, wild-caught, freshwater Anopheles gambiae Giles sensu lato. Ann Trop Med Parasitol 77 : 615–625.
  4. McCrae AWR, 1984. Oviposition by African malaria vector mosquitoes II. Effects of site tone, water type and conspecific immatures on target selection by freshwater Anopheles gambiae Giles sensu lato. Ann Trop Med Parasitol 78 : 307–318.
  5. Huang J, Walker ED, Giroux PY, Vulule J, Miller JR, 2005. Ovipositional site selection by Anopheles gambiae: Influences of substrate moisture and texture. Med Vet Entomol 19 : 442–450.
  6. Service MW, 1973. Identification of predators of Anopheles gambiae resting in huts, by the precipitin test. Trans R Soc Trop Med Hyg 67 : 33–34.
  7. Service MW, 1976. Mosquito Ecology. New York: John Wiley & Sons.
  8. Minakawa N, Mutero CM, Githure JI, Beier JC, Yan G, 1999. Spatial distribution and habitat characterization of anopheline mosquito larvae in western Kenya. Am J Trop Med Hyg 61 : 1010–1016.
  9. Minakawa N, Sonye G, Mogi M, Yan G, 2004. Habitat characteristics of Anopheles gambiae s.s. larvae in a Kenyan highland. Med Vet Entomol 18 : 301–305.
  10. Minakawa N, Sonye G, Yan G, 2005. Relationships between occurrence of Anopheles gambiae s. l. (Diptera: Culicidae) and size and stability of larval habitats. J Med Entomol 42 : 295–300.
  11. Gimnig JE, Ombok M, Kamau L, Hawley WA, 2001. Characteristics of larval anopheline (Diptera: Culicidae) habitats in western Kenya. J Med Entomol 38 : 282–288.
  12. Barasa SS, Hassanali A, Mbogo C, Tsanuo MK, Gachanja A, Githure J, Beier J, 2003. The use of static headspace, gas chromatography-mass spectrometry and chemometric analytical techniques in assigning chemical fingerprints to breeding sites of different mosquito species. Am J Trop Med Hyg 69 (Suppl 3): 208.
  13. Fillinger U, Knols BGJ, Becker N, 2003. Efficacy and efficiency of new Bacillus thuringiensis var. israelensis and Bacillus sphaericus formulations against Afrotropical anophelines in western Kenya. Trop Med Int Health 8 : 37–47.
  14. Kaufman MG, Oteino S, Walker ED, Vulule J, 2003. Shading and soil type influences on larval Anopheles gambiae growth under simulated natural habitat conditions. Am J Trop Med Hyg 69 (Suppl 3): 453–454.
  15. Knols BGJ, Sumba LA, Guda TO, Deng AL, Hassanali A, Beier JC, 2004. Mediation of oviposition site selection in the African malaria mosquito Anopheles gambiae (Diptera: Culicidae) by semiochemicals of microbial origin. Int J Trop Insect Sci 24 : 260–265.
  16. Sumba LA, Okoth K, Deng AL, Githure J, Knols BGJ, Beier JC, Hassanali A, 2004. Daily oviposition patterns of the African malaria mosquito Anopheles gambiae Giles (Diptera: Culicidae) on different types of aqueous substrates. J Circadian Rhythms 2 : 6–7.
  17. Munga S, Minakawa N, Zhou G, Barrack OJ, Githeko AK, Yan G, 2005. Oviposition site preference and egg hatchability of Anopheles gambiae: Effects of land cover types. J Med Entomol 42 : 993–997.
  18. Blackwell A, Johnson SN, 2000. Electrophysiological investigation of larval water and potential oviposition chemoattractants for Anopheles gambiae s. s. Ann Trop Med Parasitol 94 : 389–398.
  19. Rejmankova E, Higashi R, Roberts D, Lege M, Andre R, 2000. Detection of a potential oviposition attractant for Anopheles albimanus Wiedemann using solid-phase microextraction fibers in situ. Aquat Ecol 34 : 413–420.
  20. Rejmankova E, Higashi R, Grieco J, Achiee N, Roberts D, 2005. Volatile substances from larval habitats mediate species-specific oviposition in Anopheles mosquitoes. J Med Entomol 42 : 95–103.
  21. Minakawa N, Pamela P, Yan G, 2002. Influence of host and larval habitat distribution on the abundance of African malaria vectors in western Kenya. Am J Trop Med Hyg 67 : 32–38.
  22. Fay RW, Perry AS, 1965. Laboratory studies of ovipositional preferences of Aedes aegypti. Mosq News 25 : 276–281.
  23. Chadee DD, Corbet PS, Gresnwood JJD, 1990. Egg-laying yellow fever mosquitoes avoid sites containing eggs laid by themselves or by conspecifics. Entomol Exp Appl 57 : 295–298.
  24. Corbet PS, Chadee DD, 1993. An improved method for detecting substrate preferences shown by mosquitoes that exhibit “skip oviposition.” Phys Entomol 18 : 114–118.
  25. Chadee DD, Corbet PS, 1987. Seasonal incidence and diel patterns of oviposition in the field of the mosquito, Aedes aegypti (L.) (Diptera: Culicidae) in Trinidad, West Indies: A preliminary study. Ann Trop Med Hyg 81 : 151–161.
  26. Apostol BL, Black WC IV, Reiter P, Miller BP, 1994. Use of randomly amplified polymorphic DNA amplified by polymerase chain reaction markers to estimate the number of Aedes aegypti families at oviposition sites in San Juan, Puerto Rico. Am J Trop Med Hyg 51 : 87–97.
  27. Reiter PM, Amador A, Anderson RA, Clark GG, 1995. Short report: Dispersal of Aedes aegypti in an urban area after blood feeding as demonstrated by rubidium-marked eggs. Am J Trop Med Hyg 52 : 177–179.
  28. Wagbatsoma VA, Ogbeide O, 1995. Towards malaria control in Nigeria: A qualitative study on the population of mosquitoes. J R Soc Heal 115 : 363–365.
  29. Apostol BL, Black WC IV, Miller BR, Reiter P, Beaty BJ, 1993. Estimation of the number of full-sibling families at an oviposition site using RAPD-PCR markers: Applications to the mosquito Aedes aegypti. Theor Appl Genet 86 : 991–1000.
  30. Zheng L, Benedict MQ, Cornel AJ, Collins FH, Kafatos FC, 1996. An integrated genetic map of the African human malaria vector mosquito, Anopheles gambiae. Genetics 143 : 941–952.
  31. Blouin MS, Parsons M, Lacaille V, Lotz S, 1996. Use of microsatellite loci to classify individuals by relatedness. Mol Ecol 5 : 393–401.
  32. Besansky NJ, Lehmann T, Fahey GT, Fontenille D, Braack LEO, Hawley WA, Collins FH, 1997. Patterns of mitochondrial variation within and between African malaria vectors, Anopheles gambiae and An. arabiensis, suggest extensive gene flow. Genetics 147 : 1817–1828.
  33. World Health Organization, 1975. Manual on Practical Entomology in Malaria. Part II. Methods and Techniques. Geneva: World Health Organization.
  34. Yan G, Christensen BM, Severson DW, 1997. Comparisons of genetic variability and genome structure among mosquito strains selected for refractoriness to a malaria parasite. J Hered 88 : 187–194.
  35. Scott JA, Collins BWG, 1993. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg 49 : 520–529.
  36. Chen H, Githeko AK, Zhou G, Githure JI, Yan G, 2006. New records of Anopheles arabiensis breeding on the Mount Kenya highlands indicate indigenous malaria transmission. Malaria J 5 : 17.
  37. Nyanjom S, Chen H, Gebre-Michael T, Bekele E, Shililu J, Githure J, Beier J, Yan G, 2003. Population genetic structure of Anopheles arabiensis mosquitoes in Ethiopia and Eritrea. J Hered 94 : 457–463.
  38. Chen H, Minakawa N, Beier J, Yan G, 2004. Population genetic structure of Anopheles gambiae mosquitoes on Lake Victoria islands, west Kenya. Malaria J 3 : 48.
  39. Lehmann T, Hawley WA, Kamau L, Fontenille D, Simard F, Collins FH, 1996. Genetic differentiation of Anopheles gambiae populations from East and West Africa: comparison of microsatellite and allozyme loci. Heredity 77 : 192–200.
  40. Queller DC, Goodnight KF, 1989. Estimating relatedness using genetic markers. Evol Int J Org Evol 43 : 258–275.
  41. Lehmann T, Licht M, Gimnig JE, Hightower A, Vulule JM, Hawley WA, 2003. Spatial and temporal variation in kinship among Anopheles gambiae (Diptera: Culicidae) mosquitoes. J Med Entomol 40 : 421–429.
  42. Minitab, 1996. Minitab Reference Manual, Version 12.2. State College, PA: Minitab.
  43. Marshall T, Slate J, Kruuk LEB, Pemberon JM, 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7 : 639–655.
  44. Hall TA, 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41 : 95–98.
  45. Beard CB, Hamm DM, Collins FH, 1993. The mitochondrial genome of the mosquito Anopheles gambiae: DNA sequence, genome organization, and comparisons with mitochondrial sequences of other insects. Insect Mol Biol 2 : 103–124.
  46. Gwadz R, Collins FH, 1996. Anopheline mosquitoes and the agents they transmit. Beaty BJ, Marquardt WC, eds. The Biology of Disease Vectors. Boulder, CO: University Press of Colorado, 73–84.
  47. Killeen GK, Fillinger U, Knols BGJ, 2002. Advantages of larval control for African malaria vectors: Low mobility and behavioural responsiveness of immature mosquito stages allow high effective coverage. Malaria J 1 : 8.
  48. Donnelly MJ, Licht MC, Lehmann T, 2001. Evidence for recent population expansion in the evolutionary history of the malaria vectors Anopheles arabiensis and Anopheles gambiae. Mol Bio Evol 18 : 1353–1364.
  49. Schneider P, Takken W, Mccall PJ, 2000. Interspecific competition between sibling species larvae of Anopheles arabiensis and An. gambiae. Med Vet Entomol 14 : 165–170.
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.2006.75.246
Loading
/content/journals/10.4269/ajtmh.2006.75.246
Loading

Data & Media loading...

  • Received : 06 Feb 2006
  • Accepted : 23 Apr 2006

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error