Volume 75, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


is the most important malaria vector in the Amazon basin of South America, and is capable of transmitting both and To understand the genetic structure of this vector in the Amazonian region of Peru, a simple polymerase chain reaction (PCR)–based test to identify this species of mosquito was used. A random amplified polymorphic DNA–PCR was used to study genetic variation at the micro-geographic level in nine geographically separate populations of collected in areas with different degrees of deforestation surrounding the city of Iquitos. Within-population genetic diversity in nine populations, as quantified by the expected heterozygosity (H), ranged from 0.27 to 0.32. Average genetic distance (F) among these populations was 0.017. These results show that the nine studied populations are highly homogeneous, suggesting that strategies can be developed to combat this malaria vector as a single epidemiologic unit.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Aramburu Guarda J, Ramal Asayag C, Witzig R, 1999. Malaria reemergence in the Peruvian Amazon region. Emerg Infect Dis 5 : 209–215. [Google Scholar]
  2. Vittor AY, Gilman RH, Tielsch J, Glass G, Shields T, Sanchez Lozano W, Pinedo Cancino V, Patz JA, 2006. The effect of deforestation on the human-biting rate of Anopheles darlingi, the primary vector of falciparum malaria in the Peruvian Amazon. Am J Trop Med Hyg 74 : 3–11. [Google Scholar]
  3. Lourenço de Oliveira R, Da Gama A, Arle M, Fernández da Silva T, 1989. Anopheline species, some of their habits and relation to malaria in endemic areas of Rondonia state, Amazon region of Brazil. Mem Inst Oswaldo Cruz 84 : 501–514. [Google Scholar]
  4. Oliveira FJ, De Oliveira R, Teva A, Deane L, Ribeiro C, 1990. Natural infections of Anophelines in Rondonia State, Brazilian Amazon. Am J Trop Med Hyg 43 : 6–10. [Google Scholar]
  5. Gómez-Romero E, Tamariz-Ortiz T, 1998. Uso de la tierra y patrones de deforestación en la zona de Iquitos. Kalliola R, Flores-Paitan S, eds. Geoecologia y Desarrollo Amazónico. Sulkava: Finnreklama Oy.
  6. Harlem G, 2000. Informe Sobre las Enfermedades Infecciosas, Datos Epidemiológicos 1998–1999. Organización Mundial de la Salud. Accessed February 9, 2006. Available from http://www.who.int/infectious-disease-report/idr99-spanish/index.htm.
  7. Sharma V, Malhotra M, Mani T, 1984. Entomological and epidemiological study of malaria in Terai. Facets of Environmental Problems, Five Case Studies. New Delhi: Indian National Science Academy Press, 198.
  8. Kroeger A, Mancheno M, Peese K, 1995. Métodos para Mejorar el Control de la Malaria en Ecuador y Colombia. Quito: Abya Yala Press, 230.
  9. Need J, Rogers E, Phillips I, 1993. Mosquitoes (Diptera: Culicidae) captured in the Iquitos area of Peru. J Med Entomol 30 : 634–638. [Google Scholar]
  10. Marrelli MT, Floeter-Winter LM, Malafronte RS, Tadei WP, Lourenço de Oliveira R, Flores-Mendoza C, Marinotti O, 2005. Amazonian malaria vector anopheline relationships interpreted from ITS2 rDNA sequences. Med Vet Entomol 19 : 208–218. [Google Scholar]
  11. Posso C, Gonzalez R, Cardenas H, Gallego G, Duque M, Suarez M, 2003. Random amplified polymorphic DNA analysis of Anopheles nuneztovari (Diptera: Culicidae) from western and northeastern Colombia. Mem Inst Oswaldo Cruz 98 : 469–476. [Google Scholar]
  12. Lounibos L, Wilkerson R, Conn J, Hribar L, Fritz G, Danoff-Burg J, 1998. Morphological, molecular, and chromosomal discrimination of cryptic Anopheles (Nysorhynchus) (Diptera: Culicidae) from South America. J Med Entomol 35 : 830–838. [Google Scholar]
  13. Manguin S, Wilkerson RC, Conn JE, Rubio-Palis Y, Danoff-Burg JA, Roberts DR, 1999. Population structure of the primary malaria vector in South America, Anopheles darlingi, using isozyme, random amplified polymorphic DNA, internal transcribed spacer 2, and morphologic markers. Am J Trop Med Hyg 60 : 364–376. [Google Scholar]
  14. Wilkerson RC, Parsons TJ, Klein TA, Gaffigan TV, Bergo E, Consolim J, 1995. Diagnosis by random amplified polymorphic DNA polymerase chain reaction of four cryptic species related to Anopheles (Nyssorhynchus) albitarsis (Diptera: Culicidae) from Paraguay, Argentina, and Brazil. J Med Entomol 32 : 697–704. [Google Scholar]
  15. Sucharit S, Komalamisra N, 1997. Differentiation of Anopheles minimus species complex by RAPD-PCR, technique. J Med Assoc Thai 80 : 598–602. [Google Scholar]
  16. Malafronte RS, Marrelli MT, Marinotti O, 1999. Analysis of ITS2 DNA sequences from Brazilian Anopheles darlingi (Diptera: Culicidae). J Med Entomol 36 : 631–634. [Google Scholar]
  17. Molina-Cruz AP, De Merida AM, Mills K, Rodriguez F, Schoua C, Yurrita MM, Molina E, Palmieri M, Black WC IV, 2004. Gene flow among Anopheles albimanus populations in Central America, South America, and the Caribbean assessed by microsatellites and mitochondrial DNA. Am J Trop Med Hyg 71 : 350–359. [Google Scholar]
  18. Conn JE, Rosa-Freitas MG, Luz SL, Momen H, 1999. Molecular population genetics of the primary neotropical malaria vector Anopheles darlingi using mtDNA. J Am Mosq Control Assoc 15 : 468–474. [Google Scholar]
  19. Morlais I, Ponçon N, Simard F, Cohuet A, Fontenille D, 2004. Intraspecific nucleotide variation in Anopheles gambiae: New insights into the biology of malaria vectors. Am J Trop Med Hyg 71 : 795–802. [Google Scholar]
  20. Dos Santos J, Maia J, Tadei W, Rodriguez G, 2003. Izoenzimatic variability among five Anopheles species belonging to the Nysorhynchus and Anopheles subgenera of the Amazon region, Brazil. Mem Inst Oswaldo Cruz 98 : 247–253. [Google Scholar]
  21. Scarpassa VM, Tadei WP, Suarez MF, 1999. Population structure and genetic divergence in de Anopheles nuneztovari (Diptera: Culicidae) from Brazil and Colombia. Am J Trop Med Hyg 60 : 1010–1018. [Google Scholar]
  22. Mutebi JP, Black WC IV, Bosio CF, Sweeney WP, Craig GB, 1997. Linkage map for the Asian tiger mosquito Aedes (Stegomyia) albopictus based on SSCP analysis of RAPD markers. J Hered 88 : 489–494. [Google Scholar]
  23. Linthicum KJ, 1988. A revision of the Argyritarsis section of the subgenus Nyssorynchus of Anopheles (Diptera: Culicidae). Mosq Syst 20 : 98–271. [Google Scholar]
  24. Snounou G, Pinheiro L, Goncalves A, Fonseca L, Dias F, Brown K, Do Rosario V, 1993. The importance of sensitive detection of malaria parasites in the human and insect hosts in epidemiological studies, as shown by the analysis of field samples from Guinea-Bissau. Trans R Soc Trop Med Hyg 87 : 649–653. [Google Scholar]
  25. Maniatis T, Fritsch EF, Sambrook J, 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  26. Soto G, Bautista CT, Roth DE, Gilman RH, Velapatino B, Ogura M, Dailide G, Razuri M, Meza R, Katz U, Monath TP, Berg DE, Taylor DN, 2003. Helicobacter pylori reinfection is common in Peruvian adults after antibiotic eradication therapy. J Infect Dis 188 : 1263–1275. [Google Scholar]
  27. Holsinger KE, Lewis PO, Dey DK, 2002. A Bayesian approach to inferring population structure from dominant markers. Mol Ecol 11 : 1157–1164. [Google Scholar]
  28. Wright S, 1951. The genetical structure of populations. Ann Eugen 15 : 323–354. [Google Scholar]
  29. Black WC IV, 1995. Statistical analysis of arbitrary primed PCR patterns in molecular taxonomic studies. Clapp JP, eds. Methods in Molecular Biology: Species Diagnostic Protocol PCR and other Nucleic Acid Methods. Totowa, NJ: Humana Press, 39–55.
  30. Nei M, 1987. Molecular Evolutionary Genetics. New York: Columbia University Press.
  31. Kruskal J, 1964. Nonmetric multidimensional scaling: a numerical method. Psychometrika 29 : 28–42. [Google Scholar]
  32. Mantel NA, 1967. The detection of disease clustering and a generalized regression approach. Cancer Res 27 : 209–220. [Google Scholar]
  33. Sokal RR, Rohlf FJ, 1995. Biometry. New York: W. H .Freeman and Company Press.
  34. Smouse PE, Long JC, Sokal RR, 1986. Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Syst Zool 35 : 627–632. [Google Scholar]
  35. Excoffier L, Smouse PE, Quattro JM, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction sites. Genetics 131 : 479–491. [Google Scholar]
  36. Holsinger KE, Wallace LE, 2004. Bayesian approaches for the analysis of population genetic structure: an example from Platanthera leucophaea (Orchidaceae). Mol Ecol 13 : 887–894. [Google Scholar]
  37. Hartl DL, Clark AG, 1997. Principles in Population Genetics. Sunderland, MA: Sinauer Associates, Inc.
  38. Garros C, Koekemoer L, Kamau L, Awolola S, Van Bortel W, Coetzee M, Coosemans M, Manguin S, 2004. Restriction fragment length polymorphism method for the identification of major African and Asian malaria vectors within the Anopheles funestus and An. minimus groups. Am J Trop Med Hyg 70 : 260–265. [Google Scholar]
  39. Temu EA, Hunt RH, Coetzee M, 2004. Microsatellite DNA polymorphism and heterozygosity in the malaria vector mosquito Anopheles funestus (Diptera: Culicidae) in east and southern Africa. Acta Trop 90 : 39–49. [Google Scholar]
  40. Gorrochotegui-Escalante N, Gomez-Machorro C, Lozano-Fuentes S, Fernandez-Salas L, De Lourdes Munoz M, Farfan-Ale JA, Garcia-Rejon J, Beaty BJ, Black WC IV, 2002. Breeding structure of Aedes aegypti populations in Mexico varies by region. Am J Trop Med Hyg 66 : 213–222. [Google Scholar]

Data & Media loading...

  • Received : 14 Dec 2005
  • Accepted : 10 Mar 2006

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error