1921
Volume 75, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Monitoring antimalarial drug resistance is a useful epidemiologic tool and provides early detection of resistance foci. Using DNA extracted from the head/thorax of wild mosquitoes collected from Bagamoyo Coastal Tanzania, samples infected by ( = 89, in 2002 and = 249 in 2004) were screened by nested polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) assay for mutations at and associated with chloroquine (CQ) resistance. The majority of isolates were of single infection (71%), and the prevalence of mutant alleles of decreased from 64.5% in 2002 to 16% in 2004; likewise, mutant alleles decreased from 46.6% to 2.7%. Overall, there was a decline of mutant isolates by a factor of 17 and 4 for and respectively. In contrast, isolates with wild-type alleles increased significantly from < 20% in 2002 to 67.6% for and 83.5% for in 2004. This observation suggest a biologic trend of decrease of CQ mutants and a subsequent increase of CQ susceptible parasites in circulation after the discontinued use of CQ in 2001 as a first-line drug in Tanzania. High prevalence of susceptible found in circulation not only supports other reports of a decline of mutant parasites after a reduction of drug selection pressure but suggests that the fitness cost is high in mutant parasites. Typing parasite isolates from infected mosquitoes, an alternative means of data collection, has the potential to increase the spatial and temporal coverage, and this approach is practical in highly endemic regions of Africa.

Loading

Article metrics loading...

/content/journals/10.4269/ajtmh.2006.75.1182
2006-12-01
2017-09-20
Loading full text...

Full text loading...

/deliver/fulltext/14761645/75/6/0751182.html?itemId=/content/journals/10.4269/ajtmh.2006.75.1182&mimeType=html&fmt=ahah

References

  1. Laxminarayan R, 2004. Act now or later? Economics of malaria resistance. Am J Trop Med Hyg 71 : 187–195.
  2. World Health Organization, 2003. The African Malaria Report. Geneva: World Health Organization.
  3. Foote SJ, Kyle DE, Martin RK, Oduola AM, Forsyth K, Kemp DJ, Cowman AF, 1990. Several alleles of the multidrug-resistance gene are closely linked to chloroquine resistance in Plasmodium falciparum. Nature 345 : 255–258.
  4. Fidock DA, Nomura T, Talley AK, Cooper RA, Dzekunov SM, Ferdig MT, Ursos LM, Sidhu AB, Naude B, Deitsch KW, Su XZ, Wootton JC, Roepe PD, Wellems TE, 2000. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol Cell 6 : 861–871.
  5. Cowman AF, 1991. The P-glycoprotein homologues of Plasmodium falciparum: Are they involved in chloroquine resistance? Parasitol Today 7 : 70–76.
  6. Reed MB, Saliba KJ, Caruana SR, Kirk K, Cowman AF, 2000. Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature 403 : 906–909.
  7. Djimde A, Doumbo OK, Cortese JF, Kayentao K, Doumbo S, Diourte Y, Dicko A, Su XZ, Nomura T, Fidock DA, Wellems TE, Plowe CV, Coulibaly D, 2001. A molecular marker for chloroquine-resistant falciparum malaria. N Engl J Med 344 : 257–263.
  8. Mu J, Ferdig MT, Feng X, Joy DA, Duan J, Furuya T, Subramanian G, Aravind L, Cooper RA, Wootton JC, Xiong M, Su XZ, 2003. Multiple transporters associated with malaria parasite responses to chloroquine and quinine. Mol Microbiol 49 : 977–989.
  9. Vathsala PG, Pramanik A, Dhanasekaran S, Devi CU, Pillai CR, Subbarao SK, Ghosh SK, Tiwari SN, Sathyanarayan TS, Deshpande PR, Mishra GC, Ranjit MR, Dash AP, Rangarajan PN, Padmanaban G, 2004. Widespread occurrence of the Plasmodium falciparum chloroquine resistance transporter (Pfcrt) gene haplotype SVMNT in P. falciparum malaria in India. Am J Trop Med Hyg 70 : 256–259.
  10. Khalil IF, Alifrangis M, Tarimo DS, Staalso T, Satti GM, Theander TG, Ronn AM, Bygbjerg IC, 2005. The roles of the pfcrt 76T and pfmdr1 86Y mutations, immunity and the initial level of parasitaemia, in predicting the outcome of chloroquine treatment in two areas with different transmission intensities. Ann Trop Med Parasitol 99 : 441–448.
  11. Kublin JG, Cortese JF, Njunju EM, Mukadam RA, Wirima JJ, Kazembe PN, Djimde AA, Kouriba B, Taylor TE, Plowe CV, 2003. Reemergence of chloroquine-sensitive Plasmodium falciparum malaria after cessation of chloroquine use in Malawi. J Infect Dis 187 : 1870–1875.
  12. Premji Z, Hamisi Y, Shiff C, Minjas J, Lubega P, Makwaya C, 1995. Anaemia and Plasmodium falciparum infections among young children in an holoendemic area, Bagamoyo, Tanzania. Acta Trop 59 : 55–64.
  13. Temu EA, Minjas JN, Coetzee M, Hunt RH, Shiff CJ, 1998. The role of four anopheline species (Diptera: Culicidae) in malaria transmission in coastal Tanzania. Trans R Soc Trop Med Hyg 92 : 152–158.
  14. Shiff CJ, Minjas JN, Hall T, Hunt RH, Lyimo S, Davis JR, 1995. Malaria infection potential of anopheline mosquitoes sampled by light trapping indoors in coastal Tanzanian villages. Med Vet Entomol 9 : 256–262.
  15. Gillies MT, De Meillon B, 1968. The Anophelinae of Africa South of the Sahara. Johannesburg: South African Institute for Medical Research.
  16. Gillies MT, Coetzee M, 1987. Supplement to the Anophelinae of Africa South of the Sahara. Johannesburg: South African Institute for Medical Research.
  17. Arez AP, Lopes D, Pinto J, Franco AS, Snounou G, do Rosario VE, 2000. Plasmodium sp.: Optimal protocols for PCR detection of low parasite numbers from mosquito (Anopheles sp.) samples. Exp Parasitol 94 : 269–272.
  18. Chanteau S, Luquiaud P, Failloux AB, Williams SA, 1994. Detection of Wuchereria bancrofti larvae in pools of mosquitoes by the polymerase chain reaction. Trans R Soc Trop Med Hyg 88 : 665–666.
  19. Snounou G, Viriyakosol S, Zhu XP, Jarra W, Pinheiro L, do Rosario VE, Thaithong S, Brown KN, 1993. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol 61 : 315–320.
  20. Scott JA, Brogdon WG, Collins FH, 1993. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg 49 : 520–529.
  21. Koekemoer LL, Kamau L, Hunt RH, Coetzee M, 2002. A cocktail polymerase chain reaction assay to identify members of the Anopheles funestus (Diptera: Culicidae) group. Am J Trop Med Hyg 66 : 804–811.
  22. von Seidlein L, Duraisingh MT, Drakeley CJ, Bailey R, Greenwood BM, Pinder M, 1997. Polymorphism of the Pfmdr1 gene and chloroquine resistance in Plasmodium falciparum in The Gambia. Trans R Soc Trop Med Hyg 91 : 450–453.
  23. Duraisingh MT, Jones P, Sambou I, von Seidlein L, Pinder M, Warhurst DC, 2000. The tyrosine-86 allele of the pfmdr1 gene of Plasmodium falciparum is associated with increased sensitivity to the anti-malarials mefloquine and artemisinin. Mol Biochem Parasitol 108 : 13–23.
  24. Premji Z, Makwaya C, Minjas JN, 1999. Current clinical efficacy of chloroquine for the treatment of Plasmodium falciparum infections in urban Dar es Salaam, United Republic of Tanzania. Bull World Health Organ 77 : 740–744.
  25. Mita T, Kaneko A, Lum JK, Bwijo B, Takechi M, Zungu IL, Tsukahara T, Tanabe K, Kobayakawa T, Bjorkman A, 2003. Recovery of chloroquine sensitivity and low prevalence of the Plasmodium falciparum chloroquine resistance transporter gene mutation K76T following the discontinuance of chloroquine use in Malawi. Am J Trop Med Hyg 68 : 413–415.
  26. Mita T, Kaneko A, Lum JK, Zungu IL, Tsukahara T, Eto H, Kobayakawa T, Bjorkman A, Tanabe K, 2004. Expansion of wild type allele rather than back mutation in pfcrt explains the recent recovery of chloroquine sensitivity of Plasmodium falciparum in Malawi. Mol Biochem Parasitol 135 : 159–163.
  27. Abdel-Muhsin AM, Mackinnon MJ, Ali E, Nassir el KA, Suleiman S, Ahmed S, Walliker D, Babiker HA, 2004. Evolution of drug-resistance genes in Plasmodium falciparum in an area of seasonal malaria transmission in eastern Sudan. J Infect Dis 189 : 1239–1244.
  28. Liu DQ, Liu RJ, Ren DX, Gao DQ, Zhang CY, Qui CP, Cai XZ, Ling CF, Song AH, Tang X, 1995. Changes in the resistance of Plasmodium falciparum to chloroquine in Hainan, China. Bull World Health Organ 73 : 483–486.
  29. Thaithong S, Suebsaeng L, Rooney W, Beale GH, 1988. Evidence of increased chloroquine sensitivity in Thai isolates of Plasmodium falciparum. Trans R Soc Trop Med Hyg 82 : 37–38.
  30. Rosario VE, Hall R, Walliker D, Beale GH, 1978. Persistence of drug-resistant malaria parasites. Lancet 1 : 185–187.
  31. Peters JM, Chen N, Gatton M, Korsinczky M, Fowler EV, Manzetti S, Saul A, Cheng Q, 2002. Mutations in cytochrome b resulting in atovaquone resistance are associated with loss of fitness in Plasmodium falciparum. Antimicrob Agents Chemother 46 : 2435–2441.
  32. Hayward R, Saliba KJ, Kirk K, 2005. pfmdr1 mutations associated with chloroquine resistance incur a fitness cost in Plasmodium falciparum. Mol Microbiol 55 : 1285–1295.
  33. Shinondo CJ, Lanners HN, Lowrie RC Jr, Wiser MF, 1994. Effect of pyrimethamine resistance on sporogony in a Plasmodium berghei/Anopheles stephensi model. Exp Parasitol 78 : 194–202.
  34. White GB, 1974. Anopheles gambiae complex and disease transmission in Africa. Trans R Soc Trop Med Hyg 68 : 278–301.
  35. Koella JC, Sorensen FL, Anderson RA, 1998. The malaria parasite, Plasmodium falciparum, increases the frequency of multiple feeding of its mosquito vector, Anopheles gambiae. Proc R Soc Lond B Biol Sci 265 : 763–768.
  36. Briegel H, Horler E, 1993. Multiple blood meals as a reproductive strategy in Anopheles (Diptera: Culicidae). J Med Entomol 30 : 975–985.
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.2006.75.1182
Loading
/content/journals/10.4269/ajtmh.2006.75.1182
Loading

Data & Media loading...

  • Received : 15 May 2006
  • Accepted : 06 Sep 2006

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error